您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 专题24数据的分析(共50题)-2020年中考数学真题分项汇编(解析版)【全国通用】
2020年中考数学真题分项汇编(全国通用)专题24数据的分析(共50题)一.选择题(共22小题)1.(2020•深圳)某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253B.255,253C.253,247D.255,247【分析】根据中位数、众数的计算方法,分别求出结果即可.【解析】𝑥=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.2.(2020•徐州)小红连续5天的体温数据如下(单位:℃):36.6,36.2,36.5,36.2,36.3.关于这组数据,下列说法正确的是()A.中位数是36.5℃B.众数是36.2°CC.平均数是36.2℃D.极差是0.3℃【分析】根据中位数、众数、平均数、极差的计算方法,分别求出结果即可.【解析】把小红连续5天的体温从小到大排列得,36.2,36.2,36.3.36.5,36.6,处在中间位置的一个数是36.3℃,因此中位数是36.3℃;出现次数最多的是36.2℃,因此众数是36.2℃;平均数为:𝑥=(36.2+36.2+36.3+36.5+36.6)÷5=36.36℃,极差为:36.6﹣36.2=0.4℃,故选:B.3.(2020•烟台)如果将一组数据中的每个数都减去5,那么所得的一组新数据()A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变【分析】由每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,据此可得答案.【解析】如果将一组数据中的每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,故选:C.4.(2020•随州)随州7月份连续5天的最高气温分别为:29,30,32,30,34(单位:℃),则这组数据的众数和中位数分别为()A.30,32B.31,30C.30,31D.30,30【分析】根据中位数、众数的意义和计算方法分别求出结果即可.【解析】这5天最高气温出现次数最多的是30,因此众数是30;将这5天的最高气温从小到大排列,处在中间位置生物一个数是30,因此中位数是30,故选:D.5.(2020•孝感)某公司有10名员工,每人年收入数据如下表:年收入/万元46810人数/人3421则他们年收入数据的众数与中位数分别为()A.4,6B.6,6C.4,5D.6,5【分析】根据中位数、众数的计算方法,分别求出结果即可.【解析】10名员工的年收入出现次数最多的是6万元,共出现4次,因此众数是6,将这10名员工的年收入从小到大排列,处在中间位置的数是6万元,因此中位数是6,故选:B.6.(2020•广东)一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.5【分析】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.【解析】将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.7.(2020•株洲)数据12、15、18、17、10、19的中位数为()A.14B.15C.16D.17【分析】首先将这组数据按大小顺序排列,再利用中位数定义,即可求出这组数据的中位数.【解析】把这组数据从小到大排列为:10,12,15,17,18,19,则这组数据的中位数是15+172=16.故选:C.8.(2020•辽阳)某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学3次数学成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】根据方差的意义求解可得.【解析】∵s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,且平均数相等,∴s甲2<s乙2<s丙2<s丁2,∴这4名同学3次数学成绩最稳定的是甲,故选:A.9.(2020•天水)某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为()A.40,42B.42,43C.42,42D.42,41【分析】先将数据按照从小到大重新排列,再根据众数和中位数的定义求解可得.【解析】将这组数据重新排列为39,40,40,42,42,42,43,44,所以这组数据的众数为42,中位数为42+422=42,故选:C.10.(2020•荆门)为了了解学生线上学习情况,老师抽查某组10名学生的单元测试成绩如下:78,86,60,108,112,116,90,120,54,116.这组数据的平均数和中位数分别为()A.95,99B.94,99C.94,90D.95,108【分析】根据平均数和中位数的定义即可得到结论.【解析】这组数据的平均数=110(78+86+60+108+112+116+90+120+54+116)=94,把这组数据按照从小到大的顺序排列为:54,60,78,86,90,108,112,116,116,120,∴这组数据的中位数=90+1082=99,故选:B.11.(2020•潍坊)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数(个)141144145146学生人数(名)5212则关于这组数据的结论正确的是()A.平均数是144B.众数是141C.中位数是144.5D.方差是5.4【分析】根据平均数,众数,中位数,方差的性质分别计算出结果,然后判判断即可.【解析】根据题目给出的数据,可得:平均数为:𝑥=141×5+144×2+145×1+146×25+2+1+2=143,故A选项错误;众数是:141,故B选项正确;中位数是:141+1442=142.5,故C选项错误;方差是:𝑆2=110[(141−143)2×5+(144−143)2×2+(145−143)2×1+(146−143)2×2]=4.4,故D选项错误;故选:B.12.(2020•黄冈)甲、乙、丙、丁四位同学五次数学测验成绩统计如下表所示,如果从这四位同学中,选出一位同学参加数学竞赛.那么应选()去.甲乙丙丁平均分85909085方差50425042A.甲B.乙C.丙D.丁【分析】先找到四人中平均数大的,即成绩好的;再从平均成绩好的人中选择方差小,即成绩稳定的,从而得出答案.【解析】∵𝑥乙=𝑥丙>𝑥丙=𝑥丁,∴四位同学中乙、丙的平均成绩较好,又𝑆乙2<𝑆丙2,∴乙的成绩比丙的成绩更加稳定,综上,乙的成绩好且稳定,故选:B.13.(2020•广元)在2019年某中学举行的冬季田径运动会上,参加男子跳高的15名运动员的成绩如表所示:成绩(m)1.801.501.601.651.701.75人数124332这些运动员跳高成绩的中位数和众数分别是()A.1.70m,1.65mB.1.70m,1.70mC.1.65m,1.65mD.1.65m,1.60m【分析】首先根据这组数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,判断出这些运动员跳高成绩的中位数即可;然后找出这组数据中出现次数最多的数,则它就是这些运动员跳高成绩的众数,据此解答即可.【解析】∵15÷2=7…1,第8名的成绩处于中间位置,∴男子跳高的15名运动员的成绩处于中间位置的数是1.65m,∴这些运动员跳高成绩的中位数是1.65m;∵男子跳高的15名运动员的成绩出现次数最多的是1.60m,∴这些运动员跳高成绩的众数是1.60m;综上,可得这些运动员跳高成绩的中位数是1.65m,众数是1.60m.故选:D.14.(2020•黑龙江)一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,则该组数据的平均数是()A.3.6B.3.8或3.2C.3.6或3.4D.3.6或3.2【分析】先根据从小到大排列的这组数据且x为正整数、有唯一众数4得出x的值,再利用算术平均数的定义求解可得.【解析】∵从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,∴x=2或x=1,当x=2时,这组数据的平均数为2+3+4+4+55=3.6;当x=1时,这组数据的平均数为1+3+4+4+55=3.4;即这组数据的平均数为3.4或3.6,故选:C.15.(2020•岳阳)今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是()A.36.3,36.5B.36.5,36.5C.36.5,36.3D.36.3,36.7【分析】将这组数据重新排列,再根据众数和中位数的概念求解可得.【解析】将这组数据重新排列为36.3,36.3,36.5,36.5,36.5,36.7,36.8,所以这组数据的众数为36.5,中位数为36.5,故选:B.16.(2020•内江)小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是()A.80,90B.90,90C.90,85D.90,95【分析】先将数据重新排列,再根据中位数和众数的定义求解可得.【解析】将数据重新排列为80,85,90,90,95,所以这组数据的中位数是90,众数为90,故选:B.17.(2020•苏州)某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s):日走时误差0123只数3421则这10只手表的平均日走时误差(单位:s)是()A.0B.0.6C.0.8D.1.1【分析】利用加权平均数的计算方法进行计算即可.【解析】𝑥=1×4+2×2+3×13+4+2+1=1.1,故选:D.18.(2020•安徽)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是187D.中位数是13【分析】根据平均数、众数、中位数、方差的计算方法分别计算这组数据的平均数、众数、中位数、方差,最后做出选择.【解析】数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D符合题意;𝑥=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2=17[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=187,因此方差为187,于是选项C不符合题意;故选:D.19.(2020•淮安)一组数据9、10、10、11、8的众数是()A.10B.9C.11D.8【分析】根据在一组数据中出现次数最多的数叫做这组数据的众数解答即可.【解析】一组数据9、10、10、11、8的众数是10,故选:A.20.(2020•连云港)“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是()A.中位数B.众数C.平均数D.方差【分析】根据平均数、中位数、众数、方差的意义即可求解.【解析】根据题意,从7个原始评分中去掉1个最高分和1个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,不变的是中位数.故选:A.21.(2020•无锡)已知一组数据:21,23,25,25,26,这组数据的平均数和中位数分别是()A
本文标题:专题24数据的分析(共50题)-2020年中考数学真题分项汇编(解析版)【全国通用】
链接地址:https://www.777doc.com/doc-11231491 .html