您好,欢迎访问三七文档
2020年中考数学真题分项汇编(全国通用)专题28新定义与阅读理解创新型问题【共50道】一.选择题(共4小题)1.(2020•荆州)定义新运算“a*b”:对于任意实数a,b,都有a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例4*3=(4+3)(4﹣3)﹣1=7﹣1=6.若x*k=x(k为实数)是关于x的方程,则它的根的情况为()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【分析】利用新定义得到(x+k)(x﹣k)﹣1=x,再把方程化为一般式后计算判别式的值,然后利用△>0可判断方程根的情况.【解析】∵x*k=x(k为实数)是关于x的方程,∴(x+k)(x﹣k)﹣1=x,整理得x2﹣x﹣k2﹣1=0,∵△=(﹣1)2﹣4(﹣k2﹣1)=4k2+5>0,∴方程有两个不相等的实数根.故选:C.2.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=1𝑎−𝑏2,这里等式右边是实数运算.例如:1⊗3=11−32=−18.则方程x⊗(﹣2)=2𝑥−4−1的解是()A.x=4B.x=5C.x=6D.x=7【分析】所求方程利用题中的新定义化简,求出解即可.【解析】根据题意,得1𝑥−4=2𝑥−4−1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.3.(2020•潍坊)若定义一种新运算:a⊗b={𝑎−𝑏(𝑎≥2𝑏)𝑎+𝑏−6(𝑎<2𝑏),例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.【分析】根据a⊗b={𝑎−𝑏(𝑎≥2𝑏)𝑎+𝑏−6(𝑎<2𝑏),可得当x+2≥2(x﹣1)时,x≤4,分两种情况:当x≤4时和当x>4时,分别求出一次函数的关系式,然后判断即可得出结论.【解析】∵当x+2≥2(x﹣1)时,x≤4,∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,即:y=3,当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,即:y=2x﹣5,∴k=2>0,∴当x>4时,y=2x﹣5,函数图象向上,y随x的增大而增大,综上所述,A选项符合题意.故选:A.4.(2020•长沙)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:p=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为()A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟【分析】将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系p=at2+bt+c中,可得函数关系式为:p=﹣0.2t2+1.5t﹣1.9,再根据加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标,求出即可得结论.【解析】将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系p=at2+bt+c中,{9𝑎+3𝑏+𝑐=0.816𝑎+4𝑏+𝑐=0.925𝑎+5𝑏+𝑐=0.6,解得{𝑎=−0.2𝑏=1.5𝑐=−1.9,所以函数关系式为:p=﹣0.2t2+1.5t﹣1.9,由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t=−𝑏2𝑎=−1.52×(−0.2)=3.75,则当t=3.75分钟时,可以得到最佳时间.故选:C.二.填空题(共11小题)5.(2020•临沂)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为√5−1.【分析】连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,根据勾股定理即可得到结论.【解析】连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,∵点A(2,1),∴OA=√22+12=√5,∵OB=1,∴AB=√5−1,即点A(2,1)到以原点为圆心,以1为半径的圆的距离为√5−1,故答案为:√5−1.6.(2020•十堰)对于实数m,n,定义运算m*n=(m+2)2﹣2n.若2*a=4*(﹣3),则a=﹣13.【分析】根据给出的新定义分别求出2*a与4*(﹣3)的值,根据2*a=4*(﹣3)得出关于a的一元一次方程,求解即可.【解析】∵m*n=(m+2)2﹣2n,∴2*a=(2+2)2﹣2a=16﹣2a,4*(﹣3)=(4+2)2﹣2×(﹣3)=42,∵2*a=4*(﹣3),∴16﹣2a=42,解得a=﹣13,故答案为:﹣13.7.(2020•青海)对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b=√𝑎+𝑏√𝑎−𝑏,如:3⊕2=√3+2√3−2=√5,那么12⊕4=√2.【分析】先依据定义列出算式,然后再进行计算即可.【解析】12⊕4=√12+4√12−4=√2.故答案为:√2.8.(2020•湘潭)算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大的贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字如图:数字形式123456789纵式|||||||||||||||横式表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.示例如图:,则表示的数是9167.【分析】根据算筹计数法来计数即可.【解析】根据算筹计数法,表示的数是:9167故答案为:9167.9.(2020•长沙)某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出二张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为7.【分析】本题是整式加减法的综合运用,设每人有牌x张,解答时依题意列出算式,求出答案.【解析】设每人有牌x张,B同学从A同学处拿来二张扑克牌,又从C同学处拿来三张扑克牌后,则B同学有(x+2+3)张牌,A同学有(x﹣2)张牌,那么给A同学后B同学手中剩余的扑克牌的张数为:x+2+3﹣(x﹣2)=x+5﹣x+2=7.故答案为:7.10.(2020•常德)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为x=2或x=﹣1+√2或x=﹣1−√2.【分析】将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.【解析】∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1±√2,故答案为:x=2或x=﹣1+√2或x=﹣1−√2.11.(2020•衢州)定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x﹣1)※x的结果为x2﹣1.【分析】根据规定的运算,直接代值后再根据平方差公式计算即可.【解析】根据题意得:(x﹣1)※x=(x﹣1)(x+1)=x2﹣1.故答案为:x2﹣1.12.(2020•枣庄)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+12b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=6.【分析】分别统计出多边形内部的格点数a和边界上的格点数b,再代入公式S=a+12b﹣1,即可得出格点多边形的面积.【解析】∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴该五边形的面积S=4+12×6﹣1=6,故答案为:6.13.(2020•荆州)我们约定:(a,b,c)为函数y=ax2+bx+c的“关联数”,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”.若关联数为(m,﹣m﹣2,2)的函数图象与x轴有两个整交点(m为正整数),则这个函数图象上整交点的坐标为(1,0)、(2,0)或(0,2).【分析】根据题意令y=0,将关联数(m,﹣m﹣2,2)代入函数y=ax2+bx+c,则有mx2+(﹣m﹣2)x+2=0,利用求根公式可得m,将m代入可得函数图象与x轴的交点坐标;令x=0,可得y=c=2,即得这个函数图象上整交点的坐标(0,2).【解析】根据题意,令y=0,将关联数(m,﹣m﹣2,2)代入函数y=ax2+bx+c,则有mx2+(﹣m﹣2)x+2=0,△=(﹣m﹣2)2﹣4×2m=(m﹣2)2>0,∴mx2+(﹣m﹣2)x+2=0有两个根,由求根公式可得x=𝑚+2±√(−𝑚−2)2−8𝑚2𝑚x=𝑚+2±|𝑚−2|2𝑚x1=𝑚+2+(𝑚−2)2𝑚=1,此时m为不等于0的任意数,不合题意;x2=𝑚+2+2−𝑚2𝑚=42𝑚,当m=1或2时符合题意;x2=2或1;x3=𝑚+2−𝑚+22𝑚=42𝑚,当m=1或2时符合题意;x3=2或1;x4=𝑚+2−2+𝑚2𝑚=1,此时m为不等于0的任意数,不合题意;所以这个函数图象上整交点的坐标为(2,0),(1,0);令x=0,可得y=c=2,即得这个函数图象上整交点的坐标(0,2).综上所述,这个函数图象上整交点的坐标为(2,0),(1,0)或(0,2);故答案为:(2,0),(1,0)或(0,2).14.(2020•乐山)我们用符号[x]表示不大于x的最大整数.例如:[1.5]=1,[﹣1.5]=﹣2.那么:(1)当﹣1<[x]≤2时,x的取值范围是0≤x<3;(2)当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象下方.则实数a的范围是𝑎<−1或𝑎≥32.【分析】(1)根据[x]表示不大于x的最大整数,解决问题即可.(2)由题意,构建不等式即可解决问题.【解析】(1)由题意∵﹣1<[x]≤2,∴0≤x<3,故答案为0≤x<3.(2)由题意:当﹣1≤x<2时,函数y=x2﹣2a[x]+3的图象始终在函数y=[x]+3的图象下方,则有x=﹣1时,1+2a+3<﹣1+3,解得a<﹣1,或x<2时,4﹣2a+3≤1+3,解得a≥32,故答案为a<﹣1或a≥32.15.(2020•泰州)以水平数轴的原点O为圆心,过正半轴Ox上的每一刻度点画同心圆,将Ox逆时针依次旋转30°、60°、90°、…、330°得到11条射线,构成如图所示的“圆”坐标系,点A、B的坐标分别表示为(5,0°)、(4,300°),则点C的坐标表示为(3,240°).【分析】直接利用坐标的意义
本文标题:专题28新定义与阅读理解创新型问题(共50道)-2020年中考数学真题分项汇编(解析版)【全国通用】
链接地址:https://www.777doc.com/doc-11231645 .html