您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初中数学精编教案【4篇】
参考资料,少熬夜!初中数学精编教案【4篇】【导读指引】三一刀客最漂亮的网友为您整理分享的“初中数学精编教案【4篇】”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!初中数学试卷讲评优秀教案【第一篇】一、《相交线》是义务教育课程标准实验教材人教版第五章第一节的内容。教学要求了解对顶角与邻补角的概念,能从图中辨认对顶角与邻补角;知道“对顶角相等”;了解“对顶角相等”的说理过程。重点是对顶角的概念,“对顶角相等”的性质,难点是“对顶角相等”的探究过程。为完成教学任务,不遗漏一个知识细节,我按课程标准要求,挖掘教材、精心设计教学过程,力求完美解决每个问题。在第一个教学办上这节课,学生在教师的引导下,点点击破每个知识点,在下课铃声响起时,正好完成本节课教学任务。到了第二个教学班授同一节内容时,由于在第一个教学班教师从上课给学生一个一个知识点的引导讲解,不停地提问、解答,感觉很累,便换一种方式,让学生先自学本节内容,然后教师让学生谈自学的收获,同学们互相补充、交流探讨,教师只是强调了重点、点拨难点,在下课也顺利完成了本节课的任务,学生学习的效果很好,只是教师讲的少、轻松多了。课后反思:同一教学内容,采用不同的教学方式,带来的是不同的情感体验。第一节课我为追求完美的教学效果,以教师引导讲解为主,学生跟着教师解决一个问题,紧接着又一个新问题的提出,一堂课下来,教师从头说到尾,学生接受命令式的跟着听到尾,虽然也完成了教学任务,但教师感觉很累,学生也有点被迫无奈。第二节课,因教师累想休息而换一种方式,让学生自学、谈收获、体会,教师只点拨难点,同样完成教学任务,不同的学生还讲出了不同的收获,更重要的是学生积极主动参与了获取知识的过程。对比这两节课,才发现自主学习不是教师引导学生圈套式的学,而是教师要给学生足够的空间,让学生用自己的方式去设计并通过不断反思和修正来发现,而教师在课堂中的作用是对学生进行有效的指导,帮助学生形成科学概念,培养科学探究的方法、态度和习惯等等。二、本节课的不足之处本节课,我的教学设想基本转化成课堂教学行为。1、在提出问题的时候,学生的思考时间较少,只有程度较好的学生思考出来,大部分学生都还在思考中。2、欠缺对“学困生”的关注,我也没能用更好的语言激发他们。3、没能让每位学生都有足够的时间发表自己的观点。4、没能进行很好的知识延伸和拓展。5、合作探究的题目有一定的难度,大多数学生还是没能研究出结果。参考资料,少熬夜!我想:在以后实际工作中,要时刻牢记这句话,多学习别人的长处,克服不足之处,使自己的水平再迈上一个台阶。初中数学优秀教案【第二篇】教学目标:1、知识与技能:使学生经历相似多边形概念的形成过程,了解相似多边形的定义,并能根据定义判断两个多边形是否相似。2、过程与方法:在探索相似多边形本质特征的过程中,进一步发展学生归纳、类比、反思、交流等方面的能力,体会反例的作用。3、情感态度与价值观:通过观察、推断得到数学猜想、获得数学结论的过程,体验数学活动充满了探索性和创造性。教学重点:探索相似多边形的定义过程,以及用定义去判断两个多边形是否相似。教学难点:探索相似多边形的定义过程。教学过程:(一)创设情景,导入新课。(3分钟)由于学生已经学习了形状相同的图形,在这里我向学生展示一组图片(课件),引导学生从中找出形状相同的图形。学生回答后,利用课件演示抽象出多边形。大多数学生可能会指出黑板边框的内外边缘所围成的矩形的形状也相同。我紧接着创设悬念:这两个矩形的形状相同吗?利用课件演示,把内边缘的矩形的长和宽按相同比例放大后不能与外边缘矩形重合。此时的学生肯定倍感疑惑,急切想探个究竟。教师顺势导入新课:那么满足什么条件的多边形才是形状相同的多边形呢?今天我们一起来探究相似多边形。(二)自主学习,合作探究。(15分钟)1、动手实验,初步感知定义。课前发给每个小组一套相似多边形的图片(其中包括两个相似三角形、一个等边三角形、两个相似四边形),组织学生按形状相同给多边形找朋友。然后引导学生以小组为单位从中选择一组多边形探究解决下面问题。(1)在这两个多边形中,是否有相等的内角?设法验证你的猜想。(2)在这两个多边形中,相等的内角的两边是否成比例?(设计意图:引导学生分组讨论、探究、验证、交流,并进行演示,着重引导学生说明验证的方法,无论学生提出什么样的验证方式,只要有道理,教师都应给予充分肯定和鼓励。)对相等内角的两边是否对应成比例这个问题学生可能会感到困难,由于学生已经学习了成比例线段,我会利用这一点启发学生运用测量、计算的方法解决这一难点。利用多媒体演示形状相同的六边形的对应角相等,然后让参考资料,少熬夜!学生观察计算得到,相等的内角的两边成比例。然后给出对应角、对应边的概念,引导学生明确对应角、对应边的含义。2、特例探究,进一步体验定义。(课件出示问题)例:下列每组图形形状相同,它们的对应角有怎样的关系?对应边呢?(1)三角形ABC与正三角形DEF;(2)正方形ABCD与正方形EFGH.(设计意图:引导学生通过自主探究解决这个问题后进行适当引申,使学生认识到:边数相同的正多边形都相似。)3、归纳总结,形成概念。教师设问:回忆一下我们刚才探究过的每一组多边形,你能发现它们的共同特点吗?(课件出示四组图形)(设计意图:引导学生尝试用自己的语言叙述定义,教师给予规范并板书。随即给出相似多边形的表示方法和相似比的概念,接下来引导学生回忆表示全等三角形时应注意的问题,也就是要把表示对应顶点的字母写在对应的位置上,然后引导学生用类比的方法得到:在记两个多边形相似时也要把表示对应顶点的字母写在对应的位置上,说明相似比与两个多边形叙述的顺序有关。)4、深化理解。(1)满足什么条件的两个多边形相似?(2)如果两个多边形相似,那么它们的对应角和对应边有什么关系?(设计意图:使学生认识到:相似多边形的定义既是最基本最重要的判定方法,也是最本质最重要的特征。)(三)辨析研讨,知识深化。(14分钟)1、议一议:(1)观察下面两组图形,图(1)中的两个图形相似吗?为什么?图(2)中的两个图形呢?与同桌交流。(课件出示图形)(2)如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成比例吗?(3)如果两个菱形相似,那么他们需要满足什么条件?(设计意图:为了培养学生从多角度理解问题,我运用教材中两个典型的反例,引导学生讨论探究,使学生认识到:不相似的两个多边形的角也可能对应相等,不相似的两个多边形的边也可能对应成比例;反过来说:只具备各角分别对应相等或各边分别对应成比例的多边形不一定相似。进而使学生明确:判断两个多边形形相似,各角分别对应相等、各边分别对应成比例这两个条件缺一不可。通过正反两方面的对照,能使学生更深刻地理解相似多边形的定义。这是个易错点,教学时应注意给学生留出充分思考交流的时间。另外在设计时,我在教材原有内容的基础上添加了菱形的情况(见课件),引导学生探索两个菱形相似需要满足什么样的条件。)2、做一做。设问:学到这儿,你认为黑板边框内外边缘所成的这两个参考资料,少熬夜!矩形相似吗?请你计算说明。课件出示问题:一块长3m、宽的矩形黑板,镶在其外围的木质边框宽边框的内外边缘所成的矩形相似吗?为什么?(学生自主探索解决)(设计意图:为了满足学生多样化的学习需求,使不同的学生都能获得令自己满意的数学知识,我把此题进行了适当的拓展和延伸。)拓展一:如果将黑板的上边框去掉,其他条件不变。那么边框内外边缘所成的矩形相似吗?为什么?拓展二:在拓展一的基础上,如果矩形的长为2a,宽为a,边框的宽度为x。那么边框内外边缘所成的矩形还相似吗?为什么?(设计意图:引导学生讨论计算,解决问题。目的是让学生明确并不是所有相互套叠的两个矩形都不相似。使学生初步认识到直观有时是不可靠的,研究数学问题需要在提出猜想的基础上进行推理和计算,帮助学生养成严谨的学风。)(四)学以致用,巩固提高。(6分钟)慧眼识金!1、判断下列各题是否正确:(1)所有的矩形都相似。(2)所有的正方形都相似。(3)对应边成比例的两个多边形相似问题解决!2、下图中两面国旗相似,则它们对应边的比为。3、如图,两个正六边形广场砖的边长分别为a和b,它们相似吗?为什么?(课件出示图形)(设计意图:为了体现相似图形在生活中的广泛应用,我以实际问题为背景设计练习题。这是一组基础题,意在巩固相似多边形的定义以及相似比的计算。)(五)课堂小结,知识升华。(2分钟)师生共同完成。(设计意图:教师首先肯定学生在课堂中大胆的猜想和思维的积极性,然后引导学生从几方面进行反思:我学会了什么,我最感兴趣的是,我发现了什么,我能解决,我获得的数学方法是帮助学生构成新的知识网络,形成技能。)(六)布置作业:1、P113习题第3题2、画一画:在方格纸中画出两个相似多边形。3、探究题:小林在一块长为6m,宽为4m一边靠墙的矩形的小花园周围,栽种了一种蝴蝶花装饰,这种蝴蝶花的边框宽为20cm,边框内外边缘所围成的两个矩形相似吗?第1、2题作为必做题;第3题作为选做题,是对课堂上做一做的再次拓展和延伸:当矩形的长与宽的比不再是2:1时,边框内外边缘所围成的两个矩形还相似吗?板书设4、相似多边形参考资料,少熬夜!定义:各角对应相等,各边对应成比例表示方法:∽相似比:初中数学优秀教案【第三篇】教学目的1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。2.使学生会列一元一次方程解决一些简单的应用题。3.会判断一个数是不是某个方程的解。重点、难点1.重点:会列一元一次方程解决一些简单的应用题。2.难点:弄清题意,找出“相等关系”。教学过程一、复习提问一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?解:设小红能买到工本笔记本,那么根据题意,得=6因为×5=6,所以小红能买到5本笔记本。二、新授:问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)算术法:(328-64)÷44=264÷44=6(辆)列方程:设需要租用x辆客车,可得。44x+64=328(1)解这个方程,就能得到所求的结果。问:你会解这个方程吗?试试看?问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”通过分析,列出方程:13+x=(45+x)问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,因为左边=右边,所以x=3就是这个方程的解。这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?参考资料,少熬夜!如何试验根本无法人手,又该怎么办?三、巩固练习教科书第3页练习1、2。四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。五、作业。教科书第3页,习题第1、3题。初中数学试卷讲评优秀教案【第四篇】新课程改革已经伴随我们师生一段时间了,课改后的数学课堂教学应该怎样满足学生的需要,是摆在所有数学老师面前的一个难题,记得我们小学毕业时,必须通过考试择优后,才能进入中学。而今天改变了很多,小学毕业不论成绩的高低可以直接升入中学,这就直接导致了学生之间成绩的差异,由于起点不同,这给中学老师到来很大的问题。如何开展数学教学?值得我们思考。我们必须改变传统的教学模式,积极努力探求新的教学方法,以适应新课程改革下的学生。一、一切从学生的实际情况出发初中学生性格特点鲜明,说他们成熟,有些时候不成熟;说他们不成熟,有些时候成熟。他们对身边的事物充满好奇,他们思维能力高速发展,
本文标题:初中数学精编教案【4篇】
链接地址:https://www.777doc.com/doc-11256763 .html