您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 个人购房按揭贷款的还款方案探讨
个人购房按揭贷款的还款方案探讨一、摘要最近,关于个人购房按揭贷款的还款方式引起了社会各界的关注。银行目前有等额本息还款法和等本不等息递减还款法(简称等额本金还款法)两种还款方式,且一般推荐提供等额本息还款法。在合理假设的前提下,运用等差数列求和设计等额本金还款法偿还贷款本息和每月还款额的模型,运用迭代和等比数列求和两种不同方法从不同角度推导等额本息还款法偿还贷款本息和每月还款额的模型,通过计算讨论比较两者偿还贷款本息的多少,得出等额本金还款法的利息比等额本息还款法偿还贷款本息少,在贷款人具有还贷能力的条件下比较省钱。再在前两个静态模型的基础上建立考虑未来现金的折现的动态模型,进一步说明结果,更具实际性。从静态模型特点得出,两者偿还贷款本息的多少和本金无关,并且相同还款方式下,年数越小,利率越低,偿还贷款本息越少,我们取贷款月利率为4.4125‰,(年利率/12),贷款20万,得到两种方式偿还贷款本息关于年数的关系式,选取典型年数,运用excel计算选取各年数的偿还贷款本息,并据此作出折线图进行拟和,得出总体趋势,各年数下,等本不等息递减还款法计算得到的偿还贷款本息比等额本息还款法少,随着年数增加,,两者偿还贷款本息都增加,同时差额不断增加。为提高科学性,从三个方面进行验证:第一,分析其对利率的灵敏度,改变利率,其他不变,进行重新计算,得到两者偿还贷款本息增加,但是数据和图表的趋势和原先相同。第二,取20年的房贷,其他条件不变,运用matlab作两种方法每月还款额的的图,比较其金额大小,通过对图形的分析得出,虽然等本金法在前期每月还款多,但是线形下降的,最后总偿还贷款本息比等额本息还款法少。第三、通过计算得出如果提前还贷,偿还贷款本息等本金法比等额本息还款法少。对问题二,设计了双周还款法,套用静态模型,通过计算20万贷款,与原先方式进行比较,得到结果是贷款年数在一年内,采用双周法偿还贷款本息会比较少。文章最后对模型进行了评价和推广,在投资理财方面都可以进行运用二、问题重述最近,关于个人购房按揭贷款的还款方式引起了社会各界的关注。银行目前有等额本息还款法和等本不等息递减还款法两种还款方式,且一般推荐提供等额本息还款法。有人认为一笔20万元、20年的房贷,两种还款方式的差额有1万多元,认为银行在隐瞒信息,赚消费者的钱。所谓等额本息还款法,即每月以相等的额度平均偿还贷款本息,直至期满还清;而等本不等息递减还款法(简称等额本金还款法),即每月偿还贷款本金相同,而利息随本金的减少而逐月递减,直至期满还清。1.请你建立数学模型讨论这两种房贷还款方式是否有好坏之分;2.是否可以设计一些其它房贷还款方式,并作讨论;3.给报社写一篇稿子,介绍你的研究成果。三、基本假设与符号说明基本假设:1、贷款月利率不变(查资料得目前个人房贷5-30年的贷款年利率为4.95%)r=4.95%/12=4.125‰每月还息近似用月利率按月计算计算,不到5年的也近似用该利率计算2、先不考虑现金净现值(时间因素)3、每月近似按四周算4、贷款人有足够能力支付每月房贷5、银行储蓄利率比贷款率要低6、现金折算率近似银行储蓄利率符号说明:a=贷款本金n=房贷年数r=贷款月利率s=现金折现率x=总利息(按到期日计算)w=总偿还贷款本息(按到期日计算)b=每月付款(等额法)a(i)=第i月归还本金(i=1,2,3…)x(i)=第i月偿还的利息y(i)=第i月欠银行的钱w1=等本金法总付房贷款w2=等本息法总付房贷款=等本金法总付房贷款现值=等本息法总付房贷款现值a=W=a+x等额本金还款法简称等本金法等额本息还款法简称等本息法注:其他符号文中出现时再给定说明四、问题的分析及模型建立银行目前有等额本息还款法和等本不等息递减个人购房按揭贷款的还款方式,无论哪种还款方式,都有一个共同点,就是每月的还款额(也称月供)中包含两个部分:本金还款和利息还款:月还款额=当月本金还款+当月利息式1其中本金还款是真正偿还贷款的。每月还款之后,贷款的剩余本金就相应减少:当月剩余本金=上月剩余本金-当月本金还款直到最后一个月,全部本金偿还完毕。利息还款是用来偿还剩余本金在本月所产生的利息的。每月还款中必须将本月本金所产生的利息付清:当月利息=上月剩余本金×月利率式2其中月利率=年利率÷12。由上面利息偿还公式中可见,月利息是与上月剩余本金成正比的,由于在贷款初期,剩余本金较多,所以可见,贷款初期每月的利息较多,月还款额中偿还利息的份额较重。随着还款次数的增多,剩余本金将逐渐减少,月还款的利息也相应减少,直到最后一个月,本金全部还清,利息付最后一次,下个月将既无本金又无利息,至此,全部贷款偿还完毕。两种贷款的偿还原理就如上所述。上述两个公式是月还款的基本公式.其他公式都可由此导出。要比较两种方法的好坏,是在相同房贷年数的前提下比较在同一时间点上两者所付给银行总本金和利息的多少,省钱的就比较好,这里我们选取比较有代表性的贷款发生和结束时为计算还款的共同时间点。(1)以还清贷款日为计算总偿还贷款本息共同时间点,建立静态模型:1.等额本金还款方式建立模型1:等额本金还款方式,每次还款的本金还款数是一样的。为还款年数,按月归还贷款,所以还款次数为当月本金还款=总贷款数÷还款次数=当月利息=上月剩余本金×月利率=总贷款数×(1-(还款月数-1)÷还款次数)×月利率所以第i月还利息为:(=1,2,…)易见是一个以为首项的等差数列,方差为当月还款额=当月本金还款+当月利息所以,第i月还款为:总利息=所有利息之和根据等差数列求和:即:总利息=总贷款数×月利率×(还款次数+1)÷2总偿还贷款本息=本金+总利息:由于等额本金还款每个月的本金还款额是固定的,而每月的利息是递减的,因此,等额本金还款每个月的还款额是不一样的。开始还得多,而后逐月递减。2.等额本息还款方式按模型1的等额本息还款方式的公式推导见附录一下面我们从另一个角度建立模型来求解总偿还贷款本息模型2:第i月欠银行的钱数(i=0,1,2,…),为每月偿还的贷款,刚开始欠银行钱:当月欠银行钱=上月欠银行钱—当月偿还的钱:化简得:=(-)即=(-)最后一年欠款为零:所以(-)=0=====五、模型化简求解和验证显然两种方式偿还贷款本息与本金无关,因此比较w大小主要和年数n和利率r有关。我们不妨设a=200000元,先假设月利率为4.125‰,将模型化简。得到两种方式偿还贷款本息关于年数的关系式。(1)研究w和n关系,即不同年限两种方法的还款额各为多少,通过excel制得图表1总还贷额(元)房贷等本等本年数n金法w1息法w20.25201,650.00201,652.260.5202,887.50202,897.411205,362.50205,402.972210,312.50210,475.203215,262.50215,628.864220,212.50220,863.855225,162.50226,180.026230,112.50231,577.207235,062.50237,055.178240,012.50242,613.689244,962.50248,252.4310249,912.50253,971.0915274,662.50283,748.9320299,412.50315,454.4530348,912.50384,314.4050447,912.50540,742.80图表1根据这些数据绘制的图表2如下:注:系列1代表w2,系列2代表w1图表2说明:由于人年满18周岁才可申请房贷,一般还贷最后期限不会超过退休年龄,所以n取到50年,当n超过一年时,年限一般取整,这符合普通大众实际情况。从数据可以看出在年限相同时w1总比w2要小,因此虽然年数没有用穷举法,但已经揭示了其规律,不影响科学性,并且通过图表更形象看出其趋势。刚开始两者差距不大,但是从n=10时开始差距逐渐拉大.。当n=20时w1=299,412.50w2=315,454.45w2-w1=16041.95所以两种还款方式的差额有1万多元,等额本金法较省钱。验证一:当r变化时w的变化趋势,假设r=4.3‰,其他假设不变,通过excel制得图表2总还贷额(元)r=0.004125总还贷额(元)r=0.0043房贷年数等本金法等本息法等本金法等本息法0.25201,650.00201,652.26201720.00201722.460.5202,887.50202,897.41203010.00203020.761205,362.50205,402.97205590.00205633.972210,312.50210,475.20210750.00210926.783215,262.50215,628.86215910.00216308.064220,212.50220,863.85221070.00221777.695225,162.50226,180.02226230.00227335.496230,112.50231,577.20231390.00232981.277235,062.50237,055.17236550.00238714.778240,012.50242,613.68241710.00244535.699244,962.50248,252.43246870.00250443.6710249,912.50253,971.09252030.00256438.3415274,662.50283,748.93277830.00287695.2220299,412.50315,454.45303630.00321036.6830348,912.50384,314.40355230.00393582.6050447,912.50540,742.80458430.00558559.00图表3根据这些数据绘制的图表4如下:图表4显然在年限相同时w1总比w2要小当n=20时w1=303630w2=321036.68w2-w1=17406.68验证二:a=200000元4.125‰等本金法b当n=20时,每月还款额图表5如下:等本息法b图表5由图分析可知,两种方法在前几个月每月还款等本金法比等本息法要多,在后期等本金法每月还款下降很快,从图的面积可看出,总额等本金法较少。验证三:以贷款20万元、期限20年、月利率4.2‰来计算,可算出,依旧是本金还款法利息少。假如5年后,市民提前一次性还清贷款,根据本息还款法计算,5年中,已还本金49457元,已还利息69733元,需一次性付清所剩的本金250543元;根据本金还款法计算,5年中,已还本金75000元,已还利息66308元,再一次还款225000元就行了。两种还款方法比较之下,本金还款法所支付利息比本息还款法少3425元。(2)以贷款日为计算总偿还贷款本息共同时间点,考虑时间价值,对模型1,2进行改进,以月利率s=/12=2.775‰(3.33%为当前年银行存款利率),将两种还款方式下每月还本付息折现到贷款发放日,建立动态模型:改进模型1=+a/12n,根据现值计算公式化为:改进模型2:同理可得说明:显然两种方式好坏与本金无关,因此比较w大小主要和年数n和利率r有关。我们不妨设a=200000元,假设月利率为4.125‰,n=20,a=200000,用matlab求解ww1,ww2,程序源代码见附录二说明:差额并没有原先模型那样大,但等本金法仍比等额法还款少。(3)其他模型的建立(不考虑折现):由于本金是一定要还的,各种方法的本金都是一样的,因此我们研究其他还款方式因着重考虑利息,根据w1,w2公式和图表2看出,相同还款方式利率越低,年限越少,还款总额越少,因此已经贷款的可以考虑提前还贷,每种还款方式都是根据借款人剩余本金的多少计算利息的。不同的是,有的还款方式归还本金的速度比较快,有的则较慢,由此导致不同还款方式总利息的不同。根据贷款偿还原理根和图表1可知,还款年数少,前期还本金多比较核算。假设现在按双周还款R=r/
本文标题:个人购房按揭贷款的还款方案探讨
链接地址:https://www.777doc.com/doc-1131935 .html