您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 高中数学教学设计【参考4篇】
参考资料,少熬夜!高中数学教学设计【参考4篇】【导读指引】三一刀客最漂亮的网友为您整理分享的“高中数学教学设计【参考4篇】”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!高中数学教学设计范例【第一篇】重点难点教学:1、正确理解映射的概念;2、函数相等的两个条件;3、求函数的定义域和值域。教学过程:1、使学生熟练掌握函数的概念和映射的定义;2、使学生能够根据已知条件求出函数的定义域和值域;3、使学生掌握函数的三种表示方法。教学内容:1、函数的定义设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:,yfA其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}fA?叫值域(range)。显然,值域是集合B的子集。注意:①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。2、构成函数的三要素定义域、对应关系和值域。3、映射的定义设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。4、区间及写法:设a、b是两个实数,且a(1)满足不等式axb?的实数x的集合叫做闭区间,表示为(a,b);(2)满足不等式axb?的实数x的集合叫做开区间,表示为(a,b);5、函数的三种表示方法①解析法②列表法③图像法参考资料,少熬夜!高中数学教学设计【第二篇】一、教学目标1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。3、通过对四种命题之间关系的学习,培养学生逻辑推理能力4、初步培养学生反证法的数学思维。二、教学分析重点:四种命题;难点:四种命题的关系1、本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。2、教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,3、“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。三、教学手段和方法(演示教学法和循序渐进导入法)1、以故事形式入题2、多媒体演示四、教学过程(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!设计意图:创设情景,激发学生学习兴趣(二)复习提问:1、命题“同位角相等,两直线平行”的条件与结论各是什么?2、把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?3、原命题真,逆命题一定真吗?参考资料,少熬夜!“同位角相等,两直线平行”这个原命题真,逆命题也真、但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真、学生活动:口答:(1)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等、设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础、(三)新课讲解:1、命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。2、把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。3、把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。(四)组织讨论:让学生归纳什么是否命题,什么是逆否命题。例1及例2(五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?学生活动:讨论后回答这两个逆否命题都真、原命题真,逆否命题也真引导学生讨论原命题的真假与其他三种命题的真假有什么关系?举例加以说明,同学们踊跃发言。(六)课堂小结:1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是:原命题若p则q;逆命题若q则p;(交换原命题的条件和结论)否命题,若¬p则¬q;(同时否定原命题的条件和结论)逆否命题若¬q则¬p。(交换原命题的`条件和结论,并且同时否定)2、四种命题的关系(1)、原命题为真,它的逆命题不一定为真、(2)、原命题为真,它的否命题不一定为真、(3)、原命题为真,它的逆否命题一定为真参考资料,少熬夜!(七)回扣引入分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:第一句:“该来的没来”其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。同学们,生活中处处是数学,期待我们善于发现的眼睛五、作业1、设原命题是“若断它们的真假、,则”,写出它的逆命题、否命题与逆否命题,并分别判2、设原命题是“当时,若,则”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假、高中数学教学设计【第三篇】重点难点教学:1.正确理解映射的概念;2.函数相等的两个条件;3.求函数的定义域和值域。教学过程:1.使学生熟练掌握函数的概念和映射的定义;2.使学生能够根据已知条件求出函数的定义域和值域;3.使学生掌握函数的三种表示方法。教学内容:1.函数的定义设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:,yfA其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}fA?叫值域(range)。显然,值域是集合B的'子集。注意:①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素定义域、对应关系和值域。3、映射的定义设A、B是两个非空的集合,如果按某一个确定的对应关参考资料,少熬夜!系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。4.区间及写法:设a、b是两个实数,且a(1)满足不等式axb??的实数x的集合叫做闭区间,表示为[a,b];(2)满足不等式axb??的实数x的集合叫做开区间,表示为(a,b);5.函数的三种表示方法①解析法②列表法③图像法高中数学优秀教学设计【第四篇】教学准备教学目标解三角形及应用举例教学重难点解三角形及应用举例教学过程一。基础知识精讲掌握三角形有关的定理利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题。二。问题讨论思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论。思维点拨::三角形中的三角变换,应灵活运用正、余弦定理。在求值时,要利用三角函数的有关性质。例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增加,问几小时后该城市开始受到台风的侵袭。一。小结:1、利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;参考资料,少熬夜!(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);2、利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。3、边角互化是解三角形问题常用的手段。三。作业:P80闯关训练
本文标题:高中数学教学设计【参考4篇】
链接地址:https://www.777doc.com/doc-11377103 .html