您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 角平分线的课件【参考4篇】
参考资料,少熬夜!角平分线的课件【参考4篇】【导读指引】三一刀客最漂亮的网友为您整理分享的“角平分线的课件【参考4篇】”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!角平分线的定义是什么【第一篇】角平分线定义(Anglebisectordefinition)从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线(bisectorofangle)。三角形三条角平分线的交点叫做三角形的内心。三角形的内心到三边的距离相等,是该三角形内切圆的圆心。其它解释:角平分线是在角的型内及形上,到角两边距离相等的点的轨迹。角的平分线【第二篇】角的平分线-初中数学第四册教案3.9角的平分线教学目标1.掌握角的平分线的性质定理和它的逆定理的内容、证明及应用.2.理解原命题和逆命题的概念和关系,会找一个简单命题的逆命题.3.渗透角平分线是满足特定条件的点的集合的思想。教学重点和难点角平分线的性质定理和逆定理的应用是重点.性质定理和判定定理的区别和灵活运用是难点.教学过程设计一、角平分钱的性质定理与判定定理的探求与证明1,复习引入课题.(1)提问关于直角三角形全等的判定定理.(2)让学生用量角器画出图3-86中的∠AOB的角平分线OC.2.画图探索角平分线的性质并证明之.(1)在图3-86中,让学生在角平分线OC上任取一点P,并分别作出表示P点到∠AOB两边的距离的线段PD,PE.(2)这两个距离的大小之间有什么关系?为什么?学生度量后得出猜想,并用直角三角形全等的知识进行证明,得出定理.(3)引导学生叙述角平分线的性质定理(定理1),分析定理的条件、结论,并根据相应图形写出表达式.3.逆向思维探求角平分线的判定定理.(1)让学生将定理1的条件、结论进行交换,并思考所得命题是否成立?如何证明?请一位同学叙述证明过程,得出定理2――角平分线的判定定理.参考资料,少熬夜!(2)教师随后强调定理1与定理2的区别:已知角平分线用性质为定理1,由所给条件判定出角平分线是定理2.(3)教师指出:直接使用两个定理不用再证全等,可简化解题过程.4.理解角平分线是到角的两边距离都相等的点的集合.(1)角平分线上任意一点(运动显示)到角的两边的距离都相等(渗透集合的纯粹性).(2)在角的内部,到角的两边距离相等的点(运动显示)都在这个角的平分线上(而不在其它位置,渗透集合的完备性).由此得出结论:角的平分线是到角的两边距离相等的所有点的集合.二、应用举例、变式练习练习1填空:如图3-86(1)∵OC平分∠AOB,点P在射线OC上,PD⊥OA于DPE⊥OB于E.∴---------(角平分线的性质定理).(2)∵PD⊥OA,PE⊥OB,----------∴OP平分∠AOB(-------------)例1已知:如图3-87(a),ABC的角平分线BD和CE交于F.(l)求证:F到AB,BC和AC边的距离相等;(2)求证:AF平分∠BAC;(3)求证:三角形中三条内角的平分线交于一点,而且这点到三角形三边的距离相等;(4)怎样找△ABC内到三边距离相等的点?(5)若将“两内角平分线BD,CE交于F”改为“△ABC的两个外角平分线BD,CE交于F,如图3-87(b),那么(1)~(3)题的结论是否会改变?怎样找△ABC外到三边所在直线距离相等的点?共有多少个?说明:(1)通过此题达到巩固角平分线的性质定理(第(1)题)和判定定理(第(2)题)的目的.(2)此题提供了证明“三线共点”的一种常用方法:先确定两条直线交于某一点,再证明这点在第三条直线上。(3)引导学生对题目的条件进行类比联想(第(5)题),观察结论如何变化,培养发散思维能力.练习2已知△ABC,在△ABC内求作一点P,使它到△ABC三边的距离相等.练习3已知:如图3-88,在四边形ABCD中,AB=AD,AB⊥BC,AD⊥DC.求证:点C在∠DAB的平分线上.例2已知:如图3-89,OE平分∠AOB,EC⊥OA于C,ED⊥OB于D.求证:(1)OC=OD;(2)OE垂直平分CD.分析:证明第(1)题时,利用“等角的余角相等”可得到∠OEC=∠OED,再利用角平分线的性质定理得到OC=OD.这样处理,可避免证明两个三角形全等.练习4课本第54页的练习。参考资料,少熬夜!说明:训练学生将生活语言翻译成数学语言的能力.三、互逆命题,互逆定理的定义及应用1.互逆命题、互逆定理的定义.教师引导学生分析角平分线的性质,判定定理的题设、结论,使学生看到这两个命题的题设和结论正好相反,得出互逆命题、互逆定理的。定义,并举出学过的互逆命题、互逆定理的例子.教师强调“互逆命题”是两个命题之间的关系,其中任何一个做为原命题,那么另一个就是它的逆命题.2.会找一个命题的逆命题,并判定它是真、假命题.例3写出下列命题的逆命题,并判断(1)~(5)中原命题和它的逆命题是真命题还是假命题:(1)两直线平行,同位角相等;(2)直角三角形的两锐角互余;(3)对顶角相等;(4)全等三角形的对应角相等;(5)如果|x|=|y|,那么x=y;(6)等腰三角形的两个底角相等;(7)直角三角形两条直角边的平方和等于斜边的平方.说明:注意逆命题语言的准确描述,例如第(6)题的逆命题不能说成是“两底角相等的三角形是等腰三角形”.3.理解互逆命题、互逆定理的有关结论.例4判断下列命题是否正确:(1)错误的命题没有逆命题;(2)每个命题都有逆命题;(3)一个真命题的逆命题一定是正确的;(4)一个假命题的逆命题一定是错误的;(5)每一个定理都一定有逆定理.通过此题使学生理解互逆命题的真假性关系及互逆定理的定义.四、师生共同小结1.角平分线的性质定理与判定定理的条件内容分别是什么?2.三角形的角平分线有什么性质?怎样找三角形内到三角形三边距离相等的点?3.怎样找一个命题的逆命题?原命题与逆命题是否同真、同假?五、作业课本第55页第3,5,6,7,8,9题.课堂教学设计说明本教学设计需2课时完成.角平分线是符合某种条件的动点的集合,因此,利用教具,投影或计算机演示动点运动的过程和规律,更能展示知识的形成过程,有利于学生自己观察,探索新知识,从中提高兴趣,以充分培养能力,发挥学生学习的主动性.3.9角的平分线参考资料,少熬夜!教学目标角平分线课件【第三篇】角平分线课件教学目标知识与技能1.会阐述角平分线的性质定理及其逆定理。2.会应用角平分线定理及其逆定理证明两条线段相等或两个角相等。过程与方法1.经历探索角平分线作法的过程,进一步体验轴对称的特点,发展空间观察能力。2.探索角平分线定理,培养学生认真探究、积极思考的能力。情感、态度与价值观1.体验数学与生活的联系,发展学生的空间观念和审美观。2.活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,使学生具有一些初步研究问题的能力。重点难点重点角平分线的性质定理及其逆定理。难点理解并证明角平分线的性质定理及其逆定理。教学过程一、创设情境,导入新知师:同学们知道怎样作出角的平分线吗?生1:可以通过折纸得到一个角的平分线。生2:也可以用量角器来画一个角的平分线。师:下面我们来学习用尺规作图的方法作出∠AOB的平分线。作法:1.以O为圆心、任意长为半径圆弧分别交OA、OB于点M、N,如图(1).2.分别以点M、N为圆心,以大于MN长为半径在角的内部画弧交于点P,如图(2).3.作射线OP,则OP为所要求作的∠AOB的平分线,如图(3).师:通过上面的作图,启发我们可以用尺规完成:“经过一点作已知直线的垂线。”由于这一点可能在直线上或直线外,这个作图要分两种情况:1.经过已知直线上的一点作这条直线的垂线。已知:直线AB和AB上一点C,如图(1).求作:AB的垂线,使它经过点C.作法:作平角ACB的平分线CF.参考资料,少熬夜!直线CF就是所求的垂线。2.经过已知直线外一点作这条直线的垂线。已知:直线AB和AB外一点C,如图(2).求作:AB的垂线,使它经过点C.作示:(1)任意取一点K,使K和C在AB的两旁;(2)以点C为圆心、CK长为半径作弧,交AB于点D和E;(3)分别以点D和点E为圆心、大于DE的长为半径作弧,两弧交于点F;(4)作直线CF.直线CF就是所求的垂线。教师边操作边讲解:用纸剪一个角,把纸片对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片继续任意折一次,然后把纸片展开,又看到了什么?学生操作。师:从上面折纸中我们发现,纸片第一次对折后的`折痕是什么?生:是这个角的平分线。师:你第二次折时出现的两条折痕的长度之间有什么关系?生:一样长。师:因为第二次我们是任意折的,所以这种等长的折痕能折出无数对。二、共同探究,获取新知教师多媒体出示:操作:(1)折出如上图中的折痕PD、PE;(2)你和同桌用三角板测量一下,检测你们所折的折痕是否符合图示的要求。问题1:你能用文字语言阐述所画图形的性质吗?学生思考后回答。问题2:根据命题“在角平分线上的点到这个角的两边的距离相等”用符号语言填写下表:图形已知事项由已知事项推出的事项OP平分∠AOB,PD⊥OB,PE⊥OA,垂足分别为D、EPD=PE(推证定理1)问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:图形已知事项由已知事项推出的事项DE⊥AB,BC⊥AC,垂足分别为E、C,DE=DC.∠DAE=∠DAC问题4:用文字语言表述上表中的已知事项和由已知事项推出的事项。(推证定理2)三、练习新知,加深理解师:下面我们接着来探讨上面的问题3.教师多媒体出示:参考资料,少熬夜!(1)∵AD平分∠BAC,DC⊥AC,DE⊥AB,(已知)∴DC=DE.()(2)∵DC⊥AC,DE⊥AB,DC=DE,(已知)∴点D在∠BAC的平分线上。()学生思考后抢答,教师板书。第1个括号中填“角平分线上任意一点到角的两边的距离相等”,第2个括号中填“到角的两边距离相等的点在这个角的平分线上”。教师多媒体出示:例1已知:如图所示,∠C=∠C'=90°,AC=AC'.求证:(1)∠ABC=∠ABC';(2)BC=BC'.(要求不用三角形全等判定)学生思考后交流讨论。教师找一名学生板演,其余同学在下面做,然后集体订正。证明:(1)∵∠C=∠C'=90°,(已知)∴AC⊥BC,AC'⊥BC'.(垂直的定义)又∵AC=AC',(已知)∴点A在∠CBC'的角平分线上。(到一个角的两边的距离相等的点,在这个角的平分线上)∴∠ABC=∠ABC'.(2)∵∠C=∠C',∠ABC=∠ABC',∴180°-(∠C+∠ABC)=180°-(∠C'+∠ABC').(三角形内角和定理)即∠BAC=∠ABC'.∵BC⊥AC,BC'⊥AC',∴BC=BC'.(角平分线上的点到这个角的两边的距离相等)例2已知:如图,△ABC中,∠B、∠C的平分线BE、CF相交于点P.求证:AP平分∠BAC.证明:过点P分别作PM⊥BC、PN⊥AC、PQ⊥AB,垂足分别为M、N、Q.∵BE是∠B的平分线,点P在BE上,(已知)∴PQ=PM.(角平分线上任意一点到角的两边的距离相等)同理PN=PM.∴PN=PQ.(等量代换)∴AP平分∠BAC.(到角的两边距离相等的点在这个角的平分线上)四、课堂小结师:你今天学习了什么知识?有什么新的收获?学生回答,教师点评。教学反思本节课开头设计的折纸和画一画的活动,旨在丰富学生对角平分线性质的感知,有利于学生借助直观图从而准确地用文字语言揭示角平分线的性质。由于部分学生常常把“过角平分参考资料,少熬夜!线上一点向角两边画垂线段”与“过角平分线上一点画角平分线的垂线”混为一谈,因此设计操作(1)、(2),为学生能正确画出符合要求的图形,从直观上以及三角板的正确使用上都作了恰当的铺垫,同时也为定理1的推理论证作准备。通过学生自己动后操作、自己推导、自己发现,从而得到角平分线的性质定理及其逆定理,充分发挥学生的探究意识,使学生在学习中体验并掌握合作交流的学习方法,同时进一步锻炼学生的数学语
本文标题:角平分线的课件【参考4篇】
链接地址:https://www.777doc.com/doc-11438998 .html