您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 幼儿教育 > 圆柱教案【热选5篇】
圆柱教案【热选5篇】资料通常是指书籍、报刊、图表、图片等。在我们的工作中,我们经常会需要一些资料。资料可以帮助我们更高效地完成各项工作。那么,您知道我国有哪些资料种类吗?考虑到您的需求,网友特意分享的“圆柱教案【热选5篇】”,还请您下载收藏以便后续参考下载。圆柱教案篇【第一篇】教学内容:青教版九年义务教育六年制小学数学六年级下册第23—28页。教材简析:该信息窗呈现的是圆柱和圆锥形状的冰淇淋盒,并分别标出了它们的底面直径和高。引导学生提出问题,引入对圆柱、圆锥体积计算的探索和学习。“合作探索”中第一个红点部分是学习圆柱的体积。教学目标:1、结合具体情境,通过探索与发现,理解并掌握圆柱并能解决简单的实际问题。2、经历探索圆柱计算公式的过程,进一步发展空间观念。3、在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。教学重点和难点:圆柱、圆锥体积的计算方法,以及体积公式的探索推导过程。教具准备:多媒体课件、圆柱体积学具、沙子等。第一课时教学过程:一、创设情境,激趣引入。谈话:同学们,天气渐渐热了,在夏季同学们最喜欢的冷饮是什么?(生回答)课件出示:两个圆柱体冰淇淋。谈话:看,小明买了两个冰淇淋,你能猜猜哪种包装盒体积大吗?(生猜测)这节课我们就来研究圆柱的体积。(板书课题——圆柱体的体积。)设计意图:从生活中常见的例子导入新课,从中培养学生在生活中发现数学问题、提出问题的意识。学生的猜测为后面的实验验证做好了铺垫,激发学生探究新知的欲望。二、回忆旧知,实现迁移。谈话:怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。请大家想一想,在学习圆的面积时,我们是怎样推导出圆的面积计算公式的?(学生回答后,教师利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。)设计意图:通过回顾圆的面积的推导方法,巧妙地运用旧知识进行迁移。三、利用素材,探索新知。㈠交流猜测谈话:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗?生:我们学过长方体的体积,可不可以将圆柱转化成长方体呢?师谈话:你的想法很好,怎样转化呢?生讨论,交流。生汇报,可能会有以下几种想法:1、先在圆柱的底面上画一个最大的正方形,再竖着切掉四周,得到一个长方体,然后把切下的四块拼在一起。2、可以把圆柱的底面分成许多相同的扇形,然后竖着切开,重新拼一拼。3、如果是橡皮泥那样的,可以把它重新捏成一个长方体,就能计算出它的体积了。谈话:请同学讨论和评价一下,哪一种方法更合理呢?引导学生按照第二种方法进行验证。㈡实验验证学生动手进行实验。谈话:请每个小组拿出学具,按照刚才第3小组的方法把它转化为近似的长方体,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。学生合作操作,集体研究、讨论、记录。设计意图本环节让学生亲自动手操作,再次感受“化圆为方”的思想。动手操作,是学生发现规律和获取数学思想的重要途径。四、分析关系,总结公式1、全班交流谈话:哪个小组愿意展示一下你们小组的研究结果?引导学生发现:转化后的形状变了,但是体积没有变,底面的面积没有变,高也没有变。2、分析关系引导说出:圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。3、总结公式。谈话:同学们真了不起!你们的发现非常正确。我们来看一看课件演示。(课件分别演示将圆柱等分成16份、32份、64份的割拼过程,学生观察、思考。)谈话:你发现了什么?引导观察:分的份数越多,拼成的图形就越接近长方体。(课件动态演示:圆柱的高——长方体的高,圆柱的底面积——长方体的底面积。)谈话:其实大家刚才又采用了“化圆为方”的方法将圆柱转化成了长方体。你现在能总结出圆柱体积的计算公式吗?说一说你是怎样想的。根据学生的回答教师板书:长方体的体积=底面积×高圆柱的体积=底面积×高谈话:你能用字母表示圆柱的体积计算公式吗?V=Sh设计意图教师给予适当的演示,沟通圆面积计算公式的推导方法与圆柱体积计算公式推导方法的共同点——转化法,便于学生顺利推导出圆柱体积的计算公式。五、利用公式,解决问题。自主练习第1题、第2题、第3题设计意图巩固练习及时让学生利用结论解决问题,感受自己研究的重要价值,激发学习数学的兴趣。六、课堂总结圆柱教案篇【第二篇】一、设计理念及设计思路。建立促进学生全面发展的数学课程体系是新课程改革的重要任务。数学要从以获取知识为着重目标转变为首先关注学生的发展,创造一个有利于学生活泼发展的教育环境,提供给学生一个充分探究、创新发展的空间。在学习中,学生是学习的主体,教师是教学活动的组织者、引导者和合作者。在这一教学理念的指导下,我在设计本节课时,重点和难点之处都是安排学生进行动手操作,讨论交流,学生参与到知识获取中,真正理解了圆柱的侧面积为什么是底面周长×高,并能运用公式灵活计算。数学学习活动不单是单纯的接受与记忆,而是让学生亲身经历和体验富有个性的探究过程。因此设计剪一剪、看一看、找一找、议一议等教学活动。二、教学目标。知识与技能:1、理解表面积的含义;2、掌握圆柱的侧面积,表面积的计算方法,会运用公式计算表面积,解决有关的简单实际问题。过程与方法:经历圆柱的侧面积、表面积的公式的发现过程,体验利用旧知识迁移学习的方法。情感态度与价值观:感悟数学知识的能力,体会数学知识之间的相互联系。重点:理解求圆柱的侧面积、表面积的计算方法并能正确计算。难点:灵活运用侧面积、表面积的有关知识解决实际问题。教学准备:投影仪,圆柱模型、小剪刀。三、教学过程。(一)、复习引入。(投影出示)1口答下列各题:①圆的半径是1厘米,圆的周长是多少?面积是多少?②长方体、正方体的表面积如何计算。(单位:厘米)334353你能算出它们的表面积吗?2引入新课:我们已经掌握了长方体、正方体的表面积的计算方法,今天我们要来探讨圆柱表面积该如何计算。板书课题:圆柱的表面积(二)、探究新知。1圆柱的表面积的含义。师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?(讨论、交流)学生得出结论:圆柱的表面积=圆柱的侧面积+两个底面积2计算圆柱的表面积。①组织学生将自制的圆柱模型展开分组学习。②侧面展开可能会出现以下几种情况:长方形、正方形、平行四边形。③以长方形为例,指导学生观察联系。长方形的长等于圆柱底面的周长,宽等于圆柱的高。得出结论:长方形的面积=长×宽圆柱的侧面积=底面周长×高师:圆柱的两个底面是圆形,我们早就会计算它的面积了,现在我们又推导出圆柱的侧面积计算公式,那么你们知道计算圆柱的表面积吗?3解决实际问题。①投影出示例4:一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(复数保留整十平方厘米)②组织学生读题,找出条件,说说实际是求什么问题。分组学习③学生独立完成计算。④反馈订正。订正时让学生讲解题思路和步骤及计算结果取近似值的方法。强调:这里不能用“四舍五入”法取近似值。在实际中,使用的材料都要比计算得到的结果多一些,因此要用“进一法”取近似值。三、课堂小结:圆柱的表面积怎样计算?四、应用反馈。(独立完成计算)1、一个圆柱底面半径是2dm,高是,求它的表面积。2、广告公司制作了一个底面直径是,高的圆柱形灯箱,它的侧面最多可以张贴多大面积的海报?板书设计:圆柱的表面积圆柱的表面积=圆柱侧面积+两个底面积宽(圆柱的高)长(底面圆的周长)圆柱侧面积=底面周长×高圆柱教案篇【第三篇】教学目标:1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。2.方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。3情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。教学重点和难点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。教具:圆柱的体积公式演示教具,圆柱的体积公式演示课件教学过程:一、教学回顾1、交代任务:这节课我们来学习《圆柱的体积》。2、回忆导入(1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?(2)、我们都学过那些立体图形的体积公式。二、积极参与探究感受1、猜测圆柱的体积和那些条件有关。(电脑演示)2、.探究推导圆柱的体积计算公式。小组合作讨论:(1)将圆柱体切割拼成我们学过的什么立体图形?(2)切拼前后的两个物体什么变了?什么没变?(3)切拼前后的两个物体有什么联系?课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)③圆柱的体积=底面积×高字母公式是V=Sh(板书公式)2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?3、要用这个公式计算圆柱的体积必须知道什么条件?三、练习1、填空(1)、圆柱体通过切拼转化成近似的()体。这个长方体的底面积等于圆柱体的(),这个长方体的高等于圆柱体()。因为长方体的体积等于(),所以,圆柱体的体积等于()用字母表示()。(2)、底面积是10平方米,高是2米,体积是()。(3)、底面半径是2分米,高是5分米,体积是()。2讨论:(1)已知圆柱底面的半径和高,怎样求圆柱的体积V=兀r2×h(2)已知圆柱底面的直径和高,怎样求圆柱的体积V=兀(d÷2)2×h(3)已知圆柱底面的周长和高,怎样求圆柱的体积V=兀(C÷兀÷2)×h3、练习:已知半径和高求体积,已知直径和高求体积。四、小结或质疑五、作业课后做一做第1、2、3题。板书设计:圆柱的体积长方体的体积=底面积x高圆柱的体积=底面积x高V=Sh本节课的设计思考:一、让学生在现实情境中体验和理解数学《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。二、鼓励学生独立思考,引导学生自主探索、合作交流数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。不足之处:在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。在今
本文标题:圆柱教案【热选5篇】
链接地址:https://www.777doc.com/doc-11574152 .html