您好,欢迎访问三七文档
当前位置:首页 > 金融/证券 > 综合/其它 > 计量经济 人民币汇率
假设影响人民币汇率的因素有,国内生产总值,货币和准货币M2,外汇储备三个变量,为方便量化,用货币供应量同比增长率来描述货币和准货币M2,用与100美元等值的人民币数值来近似描述人民币的汇率水平。搜集1991-2007年的数据如下:序号项目年份国内生产总值(亿元)货币和准货币M2(货币供应量同比增长率)外汇储备(亿美元)人民币汇率人民币元(=100美元)11991532.320250.47.6217.121992551.523134.27.6194.431993576.226364.71121241994861.929813.411516.251995835.133070.51173661996831.436380.4111050.57199782939762.75.71398.981998827.942877.45.21449.691999827.846144.62.31546.8102000827.823072.32.31655.7112001827.7107449.72.32121.7122002827.7117208.322864.1132003827.7128958.924032.5142004827.7141964.526099.3152005819.2169996.42.38188.3162006797.2204556.12.310663.4172007760.42495302.315282.5一、模型参数估计对模型进行多次试验,最终挑选出模型的形式:0123()2^2()iLOGRESERVEGDPMLOGRESERVE并对模型进行了参数估计,结果如下:DependentVariable:LOG(EXCHANGE)Method:LeastSquaresDate:12/06/11Time:22:44Sample:19912007Includedobservations:17VariableCoefficientStd.Errort-StatisticProb.C5.0708000.20790324.390210.0000GDP-3.08E-065.55E-07-5.5482960.0001M2^20.0001496.45E-052.3084140.0381LOG(RESERVE)0.2392850.0316787.5535960.0000R-squared0.829795Meandependentvar6.642979AdjustedR-squared0.790517S.D.dependentvar0.158903S.E.ofregression0.072729Akaikeinfocriterion-2.201825Sumsquaredresid0.068764Schwarzcriterion-2.005775Loglikelihood22.71552F-statistic21.12611Durbin-Watsonstat1.226706Prob(F-statistic)0.000028经过参数估计的模型方程二、模型的检验(一)对模型进行经济意义检验:表示当没有任何经济变量影响的时候,人民币汇率为5.070800,但数值本身没有任何意义;表示每当国内生产总值增加一个单位,人民币汇率的对数值会相应减少3.08E-06个单位,国内生产总值和人民币汇率呈现负相关关系;表示每当货币供应量同比增长率的平方增加一个单位,人民币汇率的对数值会相应增长1.49E-04个单位,货币供应量和人民币汇率呈现正相关关系;表示每当外汇储备的对数值增加一个单位,人民币汇率的对数值会相应增长0.24个单位,外汇储备和人民币汇率呈现正相关关系。符合经济学知识,模型通过经济意义检验。1相关性检验拟合优度检验R2=0.790517,说明人民币汇率中79.05%可由国内生产总值,货币和准货币M2,外汇储备解释,拟合程度比较好。2显著性检验整体线性关系检验(F检验):Prob(F-statistic)=0.0000280.05,整体线性关系显著。回归系数显著性检验(t检验):Prob.=0.00010.05,通过t检验;gdp对log(exchange)线性影响显著。Prob.=0.03810.05,通过t检验;m2^2对log(exchange)线性影响显著。Prob.=0.00000.05,通过t检验,log(reserve)对log(exchange)线性影响显著。3、异方差检验①图示法检验:②对上面的模型进行WHITE检验WhiteHeteroskedasticityTest:F-statistic1.490830Probability0.306152Obs*R-squared11.17166Probability0.264126尾端面积PROB.=0.264120.05未检验出存在异方差。③进一步进行G-Q检验选取在上述OLS结果中未能通过T检验的M2^2进行G-Q检验。把M2的数据按升序排列,并将其分成三部分,选取第一部分1991-1997的数据和第三部分2001-2007年的数据分别按原方程进行回归。DependentVariable:LOG(EXCHANGE)Method:LeastSquaresDate:12/17/09Time:20:35Sample:19911997Includedobservations:7R-squared0.993658Meandependentvar6.649499AdjustedR-squared0.987316S.D.dependentvar0.133113S.E.ofregression0.014991Akaikeinfocriterion-5.267110通过作图分析,模型可能存在递增的异方差。但这并不能充分证明该模型存在异方差性,要想得到异方差的形式并加以消除,还需要更进一步的采用其他方法。Sumsquaredresid0.000674Schwarzcriterion-5.298018Loglikelihood22.43488F-statistic156.6808Durbin-Watsonstat1.965270Prob(F-statistic)0.000856DependentVariable:LOG(EXCHANGE)Method:LeastSquaresDate:12/17/09Time:20:36Sample:20012007Includedobservations:6Excludedobservations:1R-squared0.913623Meandependentvar6.647565AdjustedR-squared0.784058S.D.dependentvar0.181469S.E.ofregression0.084328Akaikeinfocriterion-1.873490Sumsquaredresid0.014222Schwarzcriterion-2.012317Loglikelihood9.620469F-statistic7.051470Durbin-Watsonstat0.689236Prob(F-statistic)0.126725SSR的比值为SSR2/SSR1=0.014222/0.000674=21.10F0.05(3,3)=9.28,拒绝原假设,μi存在异方差。④对原方程进行加权数1/abs(e),消除异方差,并进行回归。DependentVariable:LOG(EXCHANGE)Method:LeastSquaresDate:12/17/09Time:19:22Sample(adjusted):19912007Includedobservations:17afteradjustingendpointsWeightingseries:1/ABS(E)VariableCoefficientStd.Errort-StatisticProb.C5.1230750.19571326.176500.0000GDP-3.00E-063.62E-07-8.2976280.0000M2^20.0001561.94E-058.0619410.0000LOG(RESERVE)0.2315770.0284238.1476230.0000WeightedStatisticsR-squared1.000000Meandependentvar6.712539AdjustedR-squared1.000000S.D.dependentvar14.87848S.E.ofregression0.005674Akaikeinfocriterion-7.303547Sumsquaredresid0.000419Schwarzcriterion-7.107497Loglikelihood66.08015F-statistic24.33806Durbin-Watsonstat1.308886Prob(F-statistic)0.000013UnweightedStatisticsR-squared0.826616Meandependent6.642979varAdjustedR-squared0.786605S.D.dependentvar0.158903S.E.ofregression0.073405Sumsquaredresid0.070048Durbin-Watsonstat1.184263⑤再一次进行WHITE检验:WhiteHeteroskedasticityTest:F-statistic0.372977Probability0.905799Obs*R-squared6.025270Probability0.7373870.7373870.05,接受原假设,怀特检验通过且结果较消除异方差前更为良好。加权后的模型不存在异方差。4序列相关检验①图示法检验:通过图示检验,从图中表明的数据可以看出,残差值有逐年减小的趋势,预示着可能呈现序列负相关性,需要进行更进一步的检验。②对上面的模型进行D-W检验:参数估计表得到:Durbin-Watsonstat1.308886N=17,k=4dl:0.9du:1.714-dl:3.14-du:2.29dl:0.91.308886du:1.71不能确定是否存在自相关③进行LM检验,检验是否存在一阶自相关:Breusch-GodfreySerialCorrelationLMTest:Obs*R-squared1.982677Probability0.159109LM检验:Probability=0.1591090.05,说明模型不存在自相关。
本文标题:计量经济 人民币汇率
链接地址:https://www.777doc.com/doc-1180392 .html