您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 上下料机械手课程设计说明书
1专业课程设计任务书一、目的与要求《专业课程设计》是机械设计及自动化专业方向学生的重要实践性教育环节,也是该专业学生毕业设计前的最后一次课程设计。拟通过《专业课程设计》这一教学环节来着重提高学生的机构分析与综合的能力、机械结构功能设计能力、机械系统设计的能力和综合运用现代设计方法的能力,培养学生的创新与实践能力。在《专业课程设计》中,应始终注重学生能力的培养与提高。《专业课程设计》的题目为工业机械手设计,要求学生在教师的指导下,独立完成整个设计过程。学生通过《专业课程设计》,应该在下述几个方面得到锻炼:1.综合运用已学过的“机械设计学”、“液压传动”、“机械系统设计”、“计算机辅助设计”等课程和其他已学过的有关先修课程的理论和实际知识,解决某一个具体设计问题,是所学知识得到进一步巩固、深化和发展。2.通过比较完整地设计某一机电产品,培养正确的设计思想和分析问题、解决问题的能力,掌握机电产品设计的一般方法和步骤。3.培养机械设计工作者必备的基本技能,及熟练地应用有关参考资料,如设计图表、手册、图册、标准和规范等。4.进一步培养学生的自学能力、创新能力和综合素质。二.主要内容表1精锻机上料机械手主要技术参数手臂运动形式(圆柱坐标式抓取重量60kgf自由度4个手手臂运动行程和速度水平伸缩500mm设定点2升降600mm设定点2左右旋转200度设定点3手腕回转和速度180度设定点2手指夹持范围四种规格90-120定位方式和定位精度机械挡块+-1mm控制方式点位程控,开关板预选驱动方式液压kgf/cm2(1)根据以上相关设计参数及要求,完成精锻机上料机械手方案设计、结构设计及控制系统设(2)撰写专业课程设计报告一份,不少于10000字。2三、进度计划序号设计内容完成时间备注1总体方案设计第2天2绘制部件及总体设计草图第5天3绘制零件图第8天4绘制液压原理图第9天5绘制电器原理图第10天6绘制正式图第12天7编写专业课程设计报告第13天8答辩第14天四、课程设计成果要求1.机械手总装图1张(0号图纸)、部件图若干张(0号图纸);2.全部非标零件图(图纸类型是零件类型及复杂程度而定);3.液压原理图和电器控制原理图各一张;4.撰写专业课程设计报告一份,不少于10000字。五、考核方式专业课程设计的成绩评定采用四级评分制,即优秀、良好、通过和不通过。成绩的评定主要考虑学生的独立工作能力、设计质量、答辩情况和平时表现等几个方面,特别要注意学生独立进行工程技术工作的能力和创新精神,全面衡量学生的真实质量。学生姓名:安蕾刘国威刘欣磊彭澎孙赫俊指导教师:杨晓红、花广如、杨化动2011年12月30日3一机械手动作过程和主要设计参数介绍1.1任务概述本次专业课程设计的任务是设计精锻机上料机械手。本机械手是为精锻机服务的,具有能不断重复工作和劳动、不知疲劳、不怕危险、抓举重物的力量比人手大等特点,可大大减少工人的劳动强度,并且大大提高上料的效率。工业机械手是一种新型的自动化装置,它可根据作业的要求,按照预先确定的程序搬运物体,装卸零件以及操持喷枪、焊把等工具区完成一定的任务,因此它可在繁重、高温和多粉尘等劳动条件较差的作业中,部分地代替人工操作。1.2精锻机上料机械手的动作过程当旋钮打向回原点时,系统自动地回到左上角位置待命。当旋钮打向自动时,系统自动完成各工步操作,且循环动作。当旋钮打向手动时,每一工步都要按下该工步按钮才能实现。1.3精锻机上料机械手的总体设计简图由动作要求和实际生产检验的综合考虑,初步拟定机械手结构简图如下:精锻机上料机械手结构示意图1.4精锻机上料机械手的结构设计由结构示意图得,该上料机械手有4个自由度:1、腕部的回转运动。2、臂部的水平移动。3、腰部的上下移动。4、机身的回转运动。1.5精锻机上料机械手主要技术参数,见下表手臂运动形式(圆柱坐标式抓取重量60kgf自由度4个手手臂运动行程和速度水平伸缩500mm设定点2升降600mm设定点2左右旋转200度设定点3手腕回转和速度180度设定点2手指夹持范围四种规格90-120定位方式和定位精度机械挡块+-1,mm控制方式点位程控,开关板预选驱动方式液压kgf/cm24二整体方案设计2.1机械手的设计参数抓重:60kg;自由度数:4个;坐标形式:圆柱坐标;最大工作半径:1700毫米;手臂最大中心高:2300毫米;手臂运动参数;手臂伸缩范围:0~500毫米手臂伸缩速度:伸出176毫米每秒;缩回233毫米每秒;手臂升降范围:0~600毫米;手臂升降速度:上升102毫米每秒;下降152毫米每秒;手臂回转范围:00~2000(实际使用为950);手臂回转速度:630每秒;手腕运动参数:手腕回转范围:00~1800;手腕回转速度:2010每秒;手指夹持范围:Φ90-Φ120毫米;缓冲方式及定位方式:手臂伸缩:伸出时由行程开关适时切断油路,手臂缓冲,缩回时由行程开关控制返回终了位置。手臂升降:上升时是靠可调碰铁触动行程开关而发信,使电液换向阀变为“o”型滑阀机能,切断油路而实现缓冲定位,下降时靠油缸端部节流缓冲,由行程开关控制终了位置。手臂回转:采用行程节流阀(双向使用)减速缓冲,用定位油缸驱动定位销而定位。手腕回转:采用行程开关发信,切断油路滑行缓冲,死挡块定位。驱动方式:液压控制方式:点位程序控制2.2机械手实现的动作机械手原位→机械手前伸→机械手上升→机械手抓取并夹紧→机械手后退机械手左转→机械手前伸→机械手松开→机械手下降→机械手右转→退至原位2.3机械手的结构组成5本机械手系统由执行系统、驱动系统和控制系统组成。执行系统包括手部、手臂、手腕。驱动系统包括动力源、控制调节装置和辅助装置组成。控制系统由程序控制系统和电气系统组成。2.4机械手的工作过程立式精锻机和自动上料机械手等的配置如图2-4-1所示。被加热的坯料由运输车2送到上料位置后,自动上料机械手3将热坯料搬运到立式精锻机1上锻打,其成品锻件由下料机械手4送立式精锻机上取下并送到转换机械手5上,转换机械手先把锻件翻转90°成水平位置,由丙烷切割装置6将两端切齐,切割完毕,转换机械手5的手臂再水平回转87°,将锻件水平放置到下料运输装置7上,运送到车间外面的料仓处进行冷却。自动上料机械手3在此精锻生产线上可以完成取料、喂料和变换工位等动作。62.5机械手的座标型式与自由度选择按机械手手臂的不同运动形式及其组合情况,其座标型式可分为直角座标式、圆柱座标式、球座标式和关节式。由于本机械手在上下料时手臂具有升降、收缩及回转运动,因此,采用圆柱座标型式。相应的机械手具有三个自由度,为了弥补升降运动行程较小的缺点,增加手臂摆动机构,从而增加一个手臂上下摆动的自由度。2.6机械手的手部结构方案设计为了使机械手的通用性更强,把机械手的手部结构设计成可更换结构,当工件是棒料时,使用夹持式手部。2.7机械手的手腕结构方案设计考虑到机械手的通用性,同时由于被抓取工件是水平放置,因此手腕必须设有回转运动才可满足工作的要求。因此,手腕设计成回转结构,实现手腕回转运动的机构为回转液压缸。2.8机械手的手臂结构方案设计按照抓取工件的要求,本机械手的手臂有三个自由度,即手臂的伸缩、左右回转和降(或俯仰)运动。手臂的回转和升降运动是通过立柱来实现的,立柱的横向移动即为手臂的横移。手臂的各种运动由液压缸来实现。2.9机械手的驱动方案设计由于液压压传动系统的动作迅速,反应灵敏,阻力损失和泄漏较小,成本低廉因此本机械手采用液压压传动方式。2.10机械手的控制方案设计考虑到机械手的通用性,同时使用点位控制,因此我们采用可编程序控制器(PLC)对机械手进行控制。当机械手的动作流程改变时,只需改变PLC程序即可实现,非常方便快捷。7三机械手具体结构设计各机构设计3.1手部抓紧机构设计计算3.1.1对手部设计的要求1、有适当的夹紧力手部在工作时,应具有适当的夹紧力,以保证夹持稳定可靠,变形小,且不损坏工件的已加工表面。对于刚性很差的工件夹紧力大小应该设计得可以调节,对于笨重的工件应考虑采用自锁安全装置。2、有足够的开闭范围夹持类手部的手指都有张开和闭合装置。工作时,一个手指开闭位置以最大变化量称为开闭范围。对于回转型手部手指开闭范围,可用开闭角和手指夹紧端长度表示。手指开闭范围的要求与许多因素有关,如工件的形状和尺寸,手指的形状和尺寸,一般来说,如工作环境许可,开闭范围大一些较好,如图2.1所示。图2.1机械手开闭示例简图3、力求结构简单,重量轻,体积小手部处于腕部的最前端,工作时运动状态多变,其结构,重量和体积直接影响整个机械手的结构,抓重,定位精度,运动速度等性能。因此,在设计手部时,必须力求结构简单,重量轻,体积小。4、手指应有一定的强度和刚度5、其它要求因此送料,夹紧机械手,根据工件的形状,采用最常用的外卡式两指钳爪,夹紧方式用常闭史弹簧夹紧,松开时,用单作用式液压缸。此种结构较为简单,制造方便。3.1.2拉紧装置原理油缸右腔停止进油时,液压力夹紧工件,油缸右腔进油时松开1、右腔推力为FP=(π/4)D²P(2.1)=(π/4)0.5²2510³=4908.7N2、根据钳爪夹持的方位,查出当量夹紧力计算公式为:F1=(2b/a)(cosα′)²N′(2.2)8其中N′=498N=392N,带入公式2.2得:F1=(2b/a)(cosα′)²N′=(2150/50)(cos30º)²392=1764N则实际加紧力为F1实际=PK1K2/η(2.3)=17641.51.1/0.85=3424N经圆整F1=3500N3、计算手部活塞杆行程长L,即L=(D/2)tgψ(2.4)=25×tg30º=23.1mm经圆整取l=25mm4、确定“V”型钳爪的L、β。取L/Rcp=3(2.5)式中:Rcp=P/4=200/4=50(2.6)由公式(2.5)(2.6)得:L=3×Rcp=150取“V”型钳口的夹角2α=120º,则偏转角β按最佳偏转角来确定,查表得:β=22º39′5、机械运动范围(速度)【1】(1)伸缩运动Vmax=500mm/sVmin=50mm/s(2)上升运动Vmax=500mm/sVmin=40mm/s(3)下降Vmax=800mm/sVmin=80mm/s(4)回转Wmax=90º/sWmin=30º/s所以取手部驱动活塞速度V=60mm/s6、手部右腔流量Q=sv(2.7)=60πr²=60×3.14×25²=1177.5mm³/s7、手部工作压强P=F1/S(2.8)=3500/1962.5=1.78Mpa3.1.3手部液压缸尺寸计算手部受力计算手臂的行程为100mm.速度为400mm/s,起动和制动的时间为0.2s水平伸缩直线运动油缸驱动力P的计算根据受力平衡有:9NaGLRaRGLbb2002.01.0400NaGLGRRRGaab600200400NaaLGPm380100100100220018.02总=G参与运动的零部件的总重量(包括工件)200N当量摩擦系数0.18gmP导向杆的摩擦阻力,ambmPP分别为a,b杆的摩擦阻力Ra,Rb分别为导向套左右端的受力a导向套的长度200mmL工件重心距离导向套的长度100mm水平移动油缸受力状态手部油缸驱动力计算活塞杆,缸盖,缸壁,伸缩油管之间的摩擦阻力0.05PsP密封装置处的摩擦阻力0.05PhP油缸回油腔低压油造成的阻力,取为0.05PgP手臂起动或制动时活塞杆上受到的平均惯性力NtVgGPg602.02.010600v从静止加速到工作速度的速度变化量t起动的时间取为0.2s油缸驱动力ghsmPPPPP844N油缸的尺寸:当油进入无杆腔有:mmPPD3.5496.0164413.113.1110(工作压力MPaP11),取mmD60根据标准油缸外径(JB1068-67)取80mm,所以壁厚为10mm活塞杆的计算4[][]100~120pd
本文标题:上下料机械手课程设计说明书
链接地址:https://www.777doc.com/doc-118866 .html