您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 《三角形的内角和》教学设计通用4篇
参考资料,少熬夜!《三角形的内角和》教学设计通用4篇【导读指引】三一刀客最漂亮的网友为您整理分享的“《三角形的内角和》教学设计通用4篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!角形内角和教学设计【第一篇】教学内容:教材第67页例6、“做一做”及教材第69页练习十六第1~3题。教学目标:1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。3.培养学生动手动脑及分析推理能力。重点难点:掌握三角形的内角和是180°。教学准备:三角形卡片、量角器、直尺。导学过程一、复习1、什么是平角?平角是多少度?2、计算角的度数。3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)二、新知(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)1、读学卡的学习目标、任务目标,做到心里有数。2、揭题:课件演示什么是三角形的内角和。3、猜想:三角形的内角和是多少度。4、验证:(1)初证:用一副三角板说明直角三角形的内角和是180°。(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)(4)汇报结论(清楚明白的给小组加优秀10分)5、结论:修改板书,把“?”去掉,写“是”。参考资料,少熬夜!6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)三、知识运用(课件出示练习题,生解答)1、填空(1)一个三角形,它的两个内角度数之和是110,第三个内角是().(2)一个直角三角形的一个锐角是50,则另一个锐角是()。(3)等边三角形的3个内角都是()。(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。2、判断(1)一个三角形中最多有两个直角。()(2)锐角三角形任意两个内角的和大于90。()(3)有一个角是60的等腰三角形不一定是等边三角形。()(4)三角形任意两个内角的和都大于第三个内角。()(5)直角三角形中的两个锐角的和等于90。()四、拓展探究根据所学的知识,你能想办法求出四边形、五边形的内角和吗?1、小组讨论。2、汇报结果。3、课件提示帮助理解。五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。六、谈谈自己本节课的收获。教学反思今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。参考资料,少熬夜!如何验证内角和是180°,是我一直比较纠结的。环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。《三角形的内角和》教学设计【第二篇】教学目标:1、通过测量,撕拼,折叠等方法。探索和发现三角形三个内角和的度数等于180°。2、引导学生动手实验,经历知识的生长过程培养学生的探索意识和动手能力,初步感受数学研究方法。3、能运用三角形内角和知识解决一些简单的问题。参考资料,少熬夜!教学重点:探索和发现“三角形内角和是180°”。教学难点:验证“三角形内角和是180°,以及对这一知识的灵活运用。”教具准备:三角形,多媒体课中。教学过程设计:一、创设情境:故事引入,森林王国里住着平面图形和立体图形两大家族,一天平面图形的三角形家庭传出一片吵闹声,大三角形与小三角形在争论:听大三角形说:“我的内角和比你大”,小三角形不服气,可又不知如何反驳,同学们,你们知道到底谁的'内角和大吗?二、探究新知:(一)、量一量:四人一小组,分别测量本组准备的三角形的内角,并求出和。你们发现三角形的内角和是多少?汇报,提出疑问,三角形的内角和是不是刚好等于180°(二)、拼一拼引导学生独立完成,撕下二个角与第三个角拼在在一起,发现了什么?引导学生得出:三角形内角和等于180°(三)折一折引导学生同桌互相帮助完成,发现三个角形的三个内角折在一起是平角。回答大小三角形的争论:大三角形与小三角形的内角形谁大?并说出理由。三、巩固拓展1、填一填①直角形三角形的两个锐角和是()度。②直角三角形的一个锐角是45°,另一个锐角是()度。③钝角三角形的两上内角分别是20°,60°;则第三个角是()2、火眼金晴①钝角三角形的两个钝角和大于90°()。②直角三角形的两个锐角之和正好等于90°()。③淘气画了一个三个角分别是50°,70°,50°的三角形()④两个锐角是60°的三角形是等边三角形()⑤长方形的内角和等于360°()。3、猜一猜:四边形的内角和是多少度?五边形的内角和是多少度?四、小结,今天学习了什么?你有什么收获?角形内角和教案【第三篇】参考资料,少熬夜!设计理念遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。教材分析三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。学情分析学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。学习目标1.通过测量、剪、拼等活动发现、探索和发现“三角形内角和是180°”。2.学会根据“三角形内角和是180°”这一知识求三角形中一个未知数的度数。3.在课堂活动中培养学生的观察、归纳、概括能力和初步的空间想象力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。4.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。教学重点探索和发现“三角形的内角和是180°”。教学难点运用三角形的内角和解决实际问题。教学准备教师:多媒体、剪好的不同类型的三角形。参考资料,少熬夜!学生:量角器、剪刀、剪好的不同类型的三角形。教学过程一、创设情景,引出问题1.猜谜语。师:同学们,你们喜欢猜谜语吗?今天老师给你们带来了一则谜语。请同学们读一下(出示谜语)。师:打一几何图形。猜猜看!学生猜谜语。根据学生的回答,出示谜底。师:真是三角形,同学们的反应真快!2.复习三角形的内容。其实,三角形我们并不陌生,它是一种特别的平面图形。关于三角形,你们已经掌握了哪些知识?指名学生回答。(当学生回答出三角形有3个顶点、3条边和3个角时,请这名学生到台上分别指出三角形的3个角,并标出角。)3.引出课题。师:同学们知道的还真不少,可见你们平时学习很用功。知道吗?其实三角形的这三个角就是三角形的三个内角,而这三个角的度数和就是三角形的内角和。你们知道三角形的内角和是多少度吗?今天这节课就让我们一起走进三角形内角和,探索其中的奥秘。(板书课题:三角形的内角和)二、探究新知1.讨论、交流验证知识的方法。师:那同学们用什么方法来研究三角形的内角和呢?赶紧商量一下。(同桌交流)学生汇报:①用量的方法;②用拼的方法;③用折的方法。2.操作验证。师:同学们的点子还真多!现在请同学们拿出准备好的三角形,选1个自己喜欢的三角形,选择自己喜欢的方法进行验证。(或说研究)等研究完了我们再交流,发现了什么,好吗?好,现在开始!3.学生汇报。师:如果你们已经完成了,就把你的小手举起来示意老师。老师有点迫不及待了,想赶紧分享一下你们研究的成果。谁先来说?学生汇报,教师适时板书。①用量的方法:指名学生汇报度量的结果,教师板书。(指两名学生汇报)教师白板演示测量方法,并计算和板书出结果。教师:同样是测量的方法,有的同学得了180,有的不是180°,为什么会出现这种情况?(指名学生说)师:可能我们测量的时候会有误差,但是同
本文标题:《三角形的内角和》教学设计通用4篇
链接地址:https://www.777doc.com/doc-11936349 .html