您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 高中数学概率大题(经典一)
第1页(共9页)高中数学概率大题(经典一)一.解答题(共10小题)1.在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.(1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X的数学期望;(2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场;那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案?2.某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如表:办理业务所需的时间(分)12345频率0.10.40.30.10.1从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.3.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.(1)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张?(2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值.4.一袋中有m(m∈N*)个红球,3个黑球和2个白球,现从中任取2个球.(1)当m=4时,求取出的2个球颜色相同的概率;(2)当m=3时,设ξ表示取出的2个球中黑球的个数,求ξ的概率分布及数学期望;(3)如果取出的2个球颜色不相同的概率小于,求m的最小值.5.某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖.(Ⅰ)求一次抽奖中奖的概率;(Ⅱ)若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布和期望E(X).6.将一枚硬币连续抛掷15次,每次抛掷互不影响.记正面向上的次数为奇数的概率为P1,正面向上的次数为偶数的概率为P2.(Ⅰ)若该硬币均匀,试求P1与P2;(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较P1与P2的大小.7.某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:第2页(共9页)方案1:运走设备,此时需花费4000元;方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元;方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.(1)试求方案3中损失费ξ(随机变量)的分布列;(2)试比较哪一种方案好.8.2009年10月1日,为庆祝中华人们共和国成立60周年,来自北京大学和清华大学的共计6名大学生志愿服务者被随机平均分配到天安门广场运送矿泉水、清扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有一名北京大学志愿者的概率是.(1)求6名志愿者中来自北京大学、清华大学的各几人;(2)求清扫卫生岗位恰好北京大学、清华大学人各一人的概率;(3)设随机变量ζ为在维持秩序岗位服务的北京大学志愿者的人数,求ζ分布列及期望.9.在1,2,3,…9这9个自然数中,任取3个不同的数.(1)求这3个数中至少有1个是偶数的概率;(2)求这3个数和为18的概率;(3)设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.10.某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.(Ⅰ)求3个景区都有部门选择的概率;(Ⅱ)求恰有2个景区有部门选择的概率.第3页(共9页)参考答案与试题解析一.解答题(共10小题)1.(2016•南通模拟)在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.(1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X的数学期望;(2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场;那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案?【解答】解:(1)由题意知随机变量X的取值是0、1、2、3、4、5,∵当X=0时,表示主力队员参加比赛的人数为0,以此类推,∴P(X=0)=;P(X=1)=;P(X=2)=;P(X=3)=;P(X=4)=;P(X=5)=.∴随机变量X的概率分布如下表:E(X)=0×+1×+2×+3×+4×+5×=≈2.73(2)由题意知第4页(共9页)①上场队员有3名主力,方案有:(C63﹣C41)(C52﹣C22)=144(种)②上场队员有4名主力,方案有:(C64﹣C42)C51=45(种)③上场队员有5名主力,方案有:(C65﹣C43)C50=C44C21=2(种)教练员组队方案共有144+45+2=191种.2.(2012•陕西)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如表:办理业务所需的时间(分)12345频率0.10.40.30.10.1从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.【解答】解:设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布如下:Y12345P0.10.40.30.10.1(1)A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则时间A对应三种情形:①第一个顾客办理业务所需时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P(A)=0.1×0.3+0.3×0.1+0.4×0.4=0.22(2)X所有可能的取值为:0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X=1)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=0.1×0.1=0.01;所以X的分布列为X012P0.50.490.01EX=0×0.5+1×0.49+2×0.01=0.51.3.(2012•海安县校级模拟)某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.(1)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张?(2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值.【解答】解:(1)记至少一人获奖事件为A,则都不获奖的事件,设“海宝”卡n张,则任一人获奖的概率,第5页(共9页)∴,由题意:,∴n≥7.至少7张“海宝”卡,(2)ξ~的分布列为;,.4.(2011•江苏模拟)一袋中有m(m∈N*)个红球,3个黑球和2个白球,现从中任取2个球.(1)当m=4时,求取出的2个球颜色相同的概率;(2)当m=3时,设ξ表示取出的2个球中黑球的个数,求ξ的概率分布及数学期望;(3)如果取出的2个球颜色不相同的概率小于,求m的最小值.【解答】解:(1)由题意知本题是一个等可能事件的概率,∵试验发生包含的事件是从9个球中任取2个,共有C92=36种结果,满足条件的事件是取出的2个球的颜色相同,包括三种情况,共有C42+C32+C22=10设“取出的2个球颜色相同”为事件A,∴P(A)==.(2)由题意知黑球的个数可能是0,1,2P(ξ=0)=P(ξ=1)=,P(ξ=2)=∴ξ的分布列是∴Eξ=0×+1×+2×=.(3)由题意知本题是一个等可能事件的概率,事件发生所包含的事件数Cx+52,满足条件的事件是Cx1C31+Cx1C21+C31C21,设“取出的2个球中颜色不相同”为事件B,则P(B)=<,∴x2﹣6x+2>0,∴x>3+或x<3﹣,第6页(共9页)x的最小值为6.5.(2010•鼓楼区校级模拟)某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖.(Ⅰ)求一次抽奖中奖的概率;(Ⅱ)若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布和期望E(X).【解答】解:(1)由题意知本题是一个等可能事件的概率,试验发生的所有事件是从6个球中取三个,共有C63种结果,而满足条件的事件是摸到一个红球或摸到两个红球,共有C21C42+C22C41设“一次抽奖中奖”为事件A,∴即一次抽奖中奖的概率为;(2)X可取0,10,20,P(X=0)=(0.2)2=0.04,P(X=10)=C21×0.8×0.2=0.32,P(X=20)=(0.8)2=0.64,∴X的概率分布列为∴E(X)=0×0.04+10×0.32+20×0.64=16.6.(2010•盐城三模)将一枚硬币连续抛掷15次,每次抛掷互不影响.记正面向上的次数为奇数的概率为P1,正面向上的次数为偶数的概率为P2.(Ⅰ)若该硬币均匀,试求P1与P2;(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较P1与P2的大小.【解答】解:(Ⅰ)抛硬币一次正面向上的概率为,∴正面向上的次数为奇数次的概率为P1=P15(1)+P15(3)+…+P15(15)=第7页(共9页)∴(Ⅱ)∵P1=C151p1(1﹣p)14+C153p3(1﹣p)12+…+C1515p15,P2=C150p0(1﹣p)15+C152p2(1﹣p)13+…+C1514p14(1﹣p)1则P2﹣P1=C150p0(1﹣p)15﹣C151p1(1﹣p)14+C152p2(1﹣p)13+…+C1514p14(1﹣p)1﹣C1515p15=[(1﹣p)﹣p]15=(1﹣2p)15,而,∴1﹣2p>0,∴P2>P17.(2010•南通模拟)某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:方案1:运走设备,此时需花费4000元;方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元;方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.(1)试求方案3中损失费ξ(随机变量)的分布列;(2)试比较哪一种方案好.【解答】解:(1)在方案3中,记“甲河流发生洪水”为事件A,“乙河流发生洪水”为事件B,则P(A)=0.25,P(B)=0.18,所以,有且只有一条河流发生洪水的概率为P(A•+•B)=P(A)•P()+P()•P(B)=0.34,两河流同时发生洪水的
本文标题:高中数学概率大题(经典一)
链接地址:https://www.777doc.com/doc-1197653 .html