您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 高中数学幂函数教案设计精编4篇
好文供参考!1/13高中数学幂函数教案设计精编4篇【引读】这篇优秀的文档“高中数学幂函数教案设计精编4篇”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!关于幂函数的教案1教学任务分析:(1)理解幂函数的概念,会画五种常见幂函数的图像;(2)结合幂函数的图像,理解幂函数图像的变化情况和性质;(3)通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。教学重点:常见幂函数的的概念、图像和性质。教学难点:幂函数的单调性及比较两个幂值的大小。教具准备:多媒体课件、投影仪、打印好的作业。教学情景设计问题?师生活动设计意图问题1:如果张红购买了1元/千好文供参考!2/13克的蔬菜x千克,那么她需要付的钱数y(元)和购买的蔬菜量x?(千克)之间有何关系?问题2:如果正方形的边长为x,那么正方形面积y=?问题3:如果正方体的棱长为x,那么正方体体积y=问题4:如果正方形场地的面积为x,那么正方形的边长?y=?问题5:如果某人x秒内骑车行进1千米,那么他骑车的平均速度y=(千米/秒)引导学生探索发现:通过生活实例,引出幂函数的概念,使学生体会到数学在生活中的应用,激发学生的学习兴趣。你能发现这几个函数解析式有什么共同点吗??引导学生归纳结论(1)?指数为常数。(2)?右边均是以自变量为底的幂的形式;认识五种常见的幂函数。给出幂函数的定义:一般地,形如?的函数称为幂函数,其中x为自变量,α为常数。例1:在函数,,,中,哪几个函数是幂函数?引导学生依据幂函数定义及特征头判断;1、即(是)2、(不是)3、(不是)4、(是)正确认识幂函数请在同一坐标系内画出以上五好文供参考!3/13个幂函数的图像指导学生画出图像,多媒体呈现图像训练学生的作图、识图能力。观察以上图像将你发现的结论填入性质表?定义域值域高中数学幂函数教案设计2教学分析教学目标:1、掌握幂函数的概念;熟悉α=1,2,3,?,-1时的1幂函数的图象和性质;能利用幂函数的性质解决实际问题。2、通过学生对情境的观察、思考、归纳、总结形成结论,培养学生的发现问题,解决问题的力。二、教学重难点:重点:幂函数的定义,图象与性质。难点:幂函数的图象与性质。三、教学准备:教师:将幂函数图象提前画在小黑板上。四、教学导图:情境引入函数的概念幂课堂练习画出α=1,2,3,?,-1图象师生交流归纳出五个具体幂函数的性质好文供参考!4/13课堂练习例题分析课堂小结课后作业教学设计教学过程:(一)教学内容:幂函数概念的引入。设计意图:从学生熟悉的背景出发,为抽象出幂函数的概念做准备。这样,既可以让学生体会到幂函数来自于生活,又可以通过对这些案例的观察、归纳、概括、总结出幂函数的一般概念,培养学生发现问题、解决问题的能力。师生活动:教师:前面我们学习了指数函数与对数函数,这两类描述客观世界变化规律的数学模型。但是同学们知道,不是所有的客观世界变化规律都能用这两种数学模型来描述。今天,我们将学习新的一类描述客观世界变换规律的数学模型,也就是本书二点三节的幂函数。首先我们来看这样几个实际问题。第一个问题,如果老师现在准备购买单价为每千克1元的蔬菜W千克,老师总共需要花的钱P是多少?教师:非常好,老师总共需要花的钱P=W。第二个问题,如果正方形的边长为a,那么正方形的面积S等于多少?教师:回答的非常正确。面积S=.下面的问题都很简单,请同学们跟上老师的思路。第三个问题,如果正方体的边长为a,那么他的体积V等于多少了?教师:对。正方体的体积V=。第四个问题,如果已知一好文供参考!5/13个正方形面积等于S,那么这个正方形边长a等于多少了?教师:非常正确。通过前面对指数幂的学习,根式与分数指数幂是可以相互转换的,所以根号下S就等于S的二分之一次方。那么我们的边长a=。最后一个问题,认真听,某人内骑自行车行进了1KM,那他的平均速度v等于多少?教师:回答非常正确。因为我们知道v×t=s所以v==。好,现在我们一起来观察黑板上这五个具体表达式,我们可以看出第一个表达式中P是W的函数,那第二个表达式了?教师:非常好,第三个表达式了?教师:第四个表达式了?教师:第五个了?教师:大家回答得非常正确。如果将上面的函数自变量全用x代替,函数值全用y来代替,那么我们可以得到第一个表达式为。。。。。。教师:第二个表达式?教师:第三个表达式?教师:第四个表达式?教师:第五个表达式?教师:回答的非常好。那现在请同学们仔细观察老师用x,y写成的这五个函数它们有哪些共同特征。等一下请同学起来给大家分享一下你观察的结果。给大家一分钟时间思考。(一好文供参考!6/13分钟后。。。)有那个同学主动给大家分享一下你得出哪些共同特征?教师:还有其他的共同特征吗?教师:同学们都回答的非常正确哈。以后了我们就把具有这样性质的函数叫做幂函数。现在我们来给幂函数下个确的定义。一般的,他形如的函数叫做幂函数,其中x是自变量,α是常数。同学们一定要注意,幂函数与前面学习的指数函数对数函数一样,都是形式化定义,必须具有定义所给的形式,才能叫做幂函数,否者都不是幂函数。(二)教学内容:幂函数与指数函数的区别与联系。设计意图:巩固幂函数的概念,让学生回顾前面学过的幂函数的特例,较少陌生感,并且用联系的观点,让学生比较幂函数与指数函数的区别,从而加深对幂函数概念的的理解与掌握。师生活动:教师:有的同学已经发现,今天学习的幂函数与前面学习的指数函数形式上有些相似,但是老师高手你们她们两个函数有着本质的区别。黑板上已经有五个幂函数的具体例子,请同学们说几个前面学习过的指数函数的例子。教师:非常好。还有其他的吗?教师:那现在我们通过观察黑板上的例子找到这两个函数本质上的区别与联系。同学们发现了吗?她们有哪些相同点?好文供参考!7/13哪些不同点?教师:不同了?教师:回答非常正确哈。所以同学们一定不要混淆了这两类函数,记清楚那个函数的自变量在底数,那个函数的自变量在指数。我们已经明确给出了幂函数的定义,并且却别了幂函数与指数函数。现在我们来做一个练习。(三)教学内容:课堂练习设计意图:进一步巩固幂函数概念的理解。师生活动:教师:练习,判断下列函数是否为幂函数。请同学么能严格按照定义,自己动手做一下这几个题目。好。。。第一个是幂函数吗?教师:为什么了?教师:非常正确,第二个?教师:很好,第三个了?教师:到底是还不是?好好根据定义判断,也不要忘了形式间的等价转换。教师:对的,它是一个幂函数,因为我们知道,所以根据定义就是一个幂函数。第四个了?教师:因为我们知道幂前面的系数必须是1,而本题为2,所以不是。第五个了?好文供参考!8/13高中数学幂函数教案设计3教学目标1.知识目标:(1)了解幂函数的概念;(2)会画简单幂函数的图象,并能根据图象得出这些函数的性质;(3)了解幂函数随幂指数改变的性质变化情况。2.能力目标:在探究幂函数性质的活动中,培养学生观察和归纳能力,培养学生数形结合的意识和思想。3.情感目标:通过师生、生生彼此之间的讨论、互动,培养学生合作、交流、探究的意识品质,同时让学生在探索、解决问题过程中,获得学习的成就感。教学重点及难点教学重点:从具体幂函数归纳认识幂函数的一些性质并做简单应用。教学难点:引导学生概括出幂函数性质。教学方法归纳总结,数形结合,分析验证。教学媒体好文供参考!9/13幻灯片、黑板教学过程教学基本流程从实例观察引入课题→构建幂函数的概念→画出代表性函数图像→探索简单的幂函数性质→总结一般性研究方法→应用举例和课堂练习→小结与作业(一)实例观察,引入新课(1)如果张红购买了每千克1元的蔬菜w千克,那么她需要支付P=W元,P是W的函数。(y=x)?(2)如果正方形的边长为a,那么正方形的面积S=a2,S是a的函数。?(y=x2)?(3)如果立方体的边长为a,那么立方体的体积V=a3,S是a的函数。?(y=x3)(4)如果一个正方形场地的面积为S,那么正方形的边长a=s1∕2,a是S的函数。(y=x1∕2)(5)如果某人ts内骑车行进1km,那么他骑车的平均速度v=t-1,V是t的函数。(y=x-1)?问题一:以上问题中的函数具有什么共同特征?学生反应:底数都是自变量,指数都是常数。设计意图引导学生从具体的实例中进行总结,从而自然引出幂函数的一般特征。由学生讨论、总结,得出上述问题中涉及到的函数,都是好文供参考!10/13形如y=xa的函数,其中x是自变量,α是常数。(二)类比联想,探究新知1.幂函数的定义:一般地,函数y=xa叫做幂函数,其中x为自变量?ɑ为常数。注意:幂函数的解析式必须是y=xa的形式,其特征可归纳为“系数为1只有1项”。(让学生判断y=2x3y=x2+xy=_y=x-2等是否为幂函数)例题1.已知函数是幂函数,求m的值。设计意图加深学生对幂函数定义和呈现形式的理解。2.幂函数的图像与简单性质〈WWW.〉同前面的指数函数和对数函数一样,先画出函数的图像,再由图像来研究幂函数的相关性质(定义域,值域,单调性,奇偶性,定点)。找出典型的函数作为代表:y=xy=x2y=x3y=x-1在幻灯片上给出以上五个函数的图像,引导学生观察其性质(定义域,值域,单调性,奇偶性)让学生自主动手,在同一坐标系中画出这5个函数的图像,并观察图像问题二:所有图像都过第几象限,所有图像都不过第几象限,为什么?学生反应:都过第一象限,而都不过第四象限,因为当好文供参考!11/13x0时所有幂函数都有意义,且函数值都为正。问题三:所有图像都过哪些点,为什么?学生反应:都过点(1,1),因为1的任何指数幂都为1。问题四:对于原点,什么样的幂函数过,什么样的幂函数不过,为什么?学生反应:指数为正过,为负则不过,因为负指数幂可以化成分数形式,分母不能为零,所以在原点没有意义。关于幂函数的教案4教学目标:㈠知识目标1.熟悉幂函数的概念,判别幂函数;2.根据具体的幂函数图象,描述其定义域。㈡能力目标培养学生数形结合能力,合作交流能力,以及应用数学的能力。㈢情感目标让学生感受到数学来源于生活,应用于生活,并认识到现代信息技术在人们认识世界过程中的作用,激发学生的学习动力。教学重点:幂函数的概念辨析。教学用具:多媒体。好文供参考!12/13教学过程:教学环节教学任务教学步骤问题设计师生活动创设情景导入新课任务一:认识幂函数一般地,形如(α∈R,α≠0)的函数叫做幂函数,其中x为自变量,α为常数。1.问题引入问题1:你能列出下列应用问题的函数解析式吗?①每只铅笔的价格为1元,购买铅笔的金额与铅笔的支数之间的解析式;②正方形面积y与边长x之间的解析式;③正方形场地的边长y与面积x之间的解析式;④如果某人x秒内骑车行进1千米,那么他骑车的平均速度y与时间x之间解析式。幻灯片演示问题。学生口答,教师板书答案。教学环节教学任务教学步骤问题设计师生活动合作交流探究新知任务一:认识幂函数一般地,形如(α∈R,α≠0)的函数叫做幂函数,其中x为自变量,α为常数。2.探究特征上述函数解析式的结构形式有什么共同特征?(右边指数式,且底数都是变量)给出幂函数的定义。学生相互讨论,教师引导学生观察。3.辨析函数例1:判断下列函数是否是幂函数:好文供参考!13/131.高一数学必修1《幂函数教案》教案
本文标题:高中数学幂函数教案设计精编4篇
链接地址:https://www.777doc.com/doc-11999292 .html