您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 工作范文 > 幂函数的课件(通用4篇)
幂函数的课件(通用4篇)资料所覆盖的面比较广,可以指学习资料。无论是生活中,还是工作中,我们都有可能需要用到资料。资料可以帮助我们更高效地完成各项工作。那么,您知道资料的主要内容是什么吗?以下是网友为大家分享的“幂函数的课件(通用4篇)”,欢迎大家参考下载。幂函数的课件1一、教材分析幂函数是学生在系统学习了指数函数、对数函数之后研究的又一类基本初等函数。是对函数概念及性质的应用,能进一步培养利用函数的性质(定义域、值域、图像、奇偶性、单调性)研究一个函数的意识。因而本节课更是一个对学生研究函数的方法和能力的综合提升。从概念到图象(),利用这五个函数的图象探究其定义域、值域、奇偶性、单调性、公共点,概括、归纳幂函数的性质,培养学生从特殊到一般再到特殊的一般认知规律。从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,以便能将该方法迁移到对其他函数的研究。二、教学目标分析依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下:[知识与技能]使学生了解幂函数的定义,会画常见幂函数的图象,掌握幂函数的图象和性质,初步学会运用幂函数解决问题,进一步体会数形结合的思想。[过程与方法]引入、剖析、定义幂函数的过程,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法;通过运用多媒体的教学手段,引领学生主动探索幂函数性质,体会学习数学规律的方法,体验成功的乐趣;对幂函数的性质归纳、总结时培养学生抽象概括和识图能力;运用性质解决问题时,进一步强化数形结合思想。[情感、态度与价值观]通过生活实例引出幂函数概念,使学生体会生活中处处有数学,激发学生的学习兴趣。通过本节课的学习,使学生进一步加深研究函数的规律和方法;提高学生的学习能力;养成积极主动,勇于探索,不断创新的学习习惯和品质;树立学科学,爱科学,用科学的精神。三、重、难点分析[教学重点](1)幂函数的定义与性质;(2)指数α的变化对幂函数y=xα(α∈R)的影响。从知识体系看,前面有指数函数与对数函数的学习,后面有其他函数的研究,本节课的学习具有承上启下的作用;就知识特点而言,蕴涵丰富的数学思想方法;就能力培养来说,通过学生对幂函数性质的归纳,可培养学生类比、归纳概括能力,运用数学语言交流表达的能力。[教学难点](1)指数α的变化对幂函数y=xα(α∈R)性态的影响。(2)数形结合解决大小比较以及求参数的问题。从学生认知发展看,他们具备一定的学习新函数的能力,可以通过学习指数函数与对数函数的方法来类比,但毕竟幂函数在三种初等函数中是最难的,因为它分类的情况很多,且性质多而复杂,我采用让学生自己利用计算机作出函数的图像,从中归纳性质的方法来突破难点。四、学情与教法分析1.学情分析从学生思维特点来和认知结构看,前面学生已经学习指数函数与对数函数,对新函数的学习已经有了一定的经验。一方面可以把本节课与前面的指数函数与对数函数进行类比学习,但另一方面本节课分类情况多,性质归纳困难,尤其是三个函数放在一起可能产生混淆。对进入高中半个学期的学生来说,虽然具备一定的分析和解决问题的能力,逻辑思维也初步形成,但缺乏冷静、深刻,思维具有片面性、不严谨的特点,对问题解决的一般性思维过程认识比较模糊。2.教法分析学生思维活跃,求知欲强,但在思维习惯上还有待教师引导从学生原有的知识和能力出发,在教师的带领下创设疑问,通过合作交流,共同探索,逐步解决问题。采用引导发现式的教学方法,充分利用多媒体辅助教学。通过教师点拨,启发学生主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。3.教学构想新课标的要求是通过实例,了解y=x,,,,的图像,了解它们的变化情况。而原数学教学大纲要求掌握幂函数的概念及其图像和性质,在考查掌握函数性质和运用性质解决问题时,所涉及的幂函数f(x)=xα中α限于在集合{-2,-1,-,,,1,2,3}中取值。新课标无论从内容的容量和难度上都要远低于旧课标。而苏教版的教材严格按照新课标要求处理此部分内容,内容体系均未超出课标要求。所以我们应以新课标为准绳,控制难度与要求。由于本节课的难点在于指数α的变化对幂函数y=xα(α∈R)性态的影响,本身幂函数比较抽象,所以我采用在多媒体教室让学生用Excel来模拟得到图象,再从图象上观察、归纳函数的性质。从心理学上讲,自己经历知识的发生发展过程,印象更深刻,学生容易接受与理解。五、教具准备教师准备教科书、多媒体课件,在计算机教室。六、教学过程教学环节教学设计设计意图教学内容教师活动学生活动?问题情景1我们知道:一定,?的变化而变化,我们建立了指数函数?一定,?的变化而变化,我们建立了对数函数?一定,?的变化而变化,是不是也应该可以确定一个函数呢?打开多媒体课件,带领大家一起回顾前面的知识点。在老师的引导下,展开思维分析。知识点回顾,揭示函数之间的联系,追求函数的完美,知识体系的完备性。?问题情景2问题1:如果张红购买了每千克1元的蔬菜w千克,那么她需要付的钱数p=w元,这里p是w的函数。问题2:如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数。问题3:如果正方体的边长为a,那么正方体的体积V=a3,这里V是a的函数。问题4:如果正方形场地的面积为S,那么正方形的边长a=S?km/s,这里v是t的函数。引导学生观察五个有关幂函数模型的生活实例,帮助学生归纳这些函数的共同特征。由于是熟悉的背景,学生求函数的解析式还是轻松的,只是从中归纳函数的共同特点有点困难。主要目的是引出五种典型的幂函数,为后面三大类幂函数的归纳总结打下基础。提出日常生活中的问题,学生既容易理解,又可以增加学习的兴趣。得出幂函数的定义我们把形如:?是实常数。?判断下列函数那些是幂函数:①y=x-2;②y=2x2;③y=(2x);④y=2x让学生归纳总结,类比指数函数与幂函数,指出形式上的特点:①底数只能是自变量x,②x前系数只能为1。观察、分析,概括。在练习的过程中加深对概念的理解和形式的注意。学生自主探究,培养学生的观察、概括能力。建构数学例2、求下列函数的定义域,判断它们的奇偶性。13利用Excel作出下列幂函数的图象并观察其特点。1y=x2?3在前面例1的基础上利用函数的定义域,列出数据,先用计算机模拟画出图象示范给学生看,让学生自己动手操作,一边巡视一边指导。同时引导学生观察、思考填写表格。启发学生类比前面研究指数和对数函数的方法,从特殊到一般,归纳总结幂函数的性质。学生自己跟着老师的步骤操作,利用计算机作出五种典型函数的图象,让学生观察和分析所作的图象,归纳得出图象特征,并由图象特征得到相应的函数性质。经历知识发生过程,性质的归纳不断由学生补充,修改和完善,学会数学语言的运用与交流,体会合作学习的快乐与成功带来的成就感。预见到学生对抽象的幂函数理解比较困难,所以让学生亲身经历知识的发生发展过程,印象更加深刻。在归纳总结的过程中,培养学生研究新函数从特殊到一般,类比联想的数学方法;积累学生独立思考与互相合作学习的经验。归?纳?概?括?幂函数的课件2§5简单的幂函数(第1课时)交大二附中刘正伟一、课标三维目标:1.知识技能:了解简单幂函数的概念;通过具体实例了解幂函数的图象和性质,并能进行初步的应用.2.过程与方法:通过作函数图像,让学生体会幂函数图像的特点,会利用定义证明简单函数的奇偶性,了解利用奇偶性画函数图像和研究函数的方法。3.情感、态度、价值观:进一步渗透数形结合与类比的思想方法;培养从特殊归纳出一般的意识,体会幂函数的变化规律及蕴含其中的对称性。二、教学重点与难点:重点:幂函数的概念,函数奇、偶性的概念。难点:判断函数的奇偶性。三、学法指导:通过数形结合,类比、观察、思考、交流、讨论,理解幂函数的概念和函数的奇偶性。四、教学方法:对奇偶性要求不高,题目不需要过难,尽量用多媒体和计算机画函数的图像,重在从图上看出图像关于谁对称,着重从对称的角度应用这一性质,培养学生自己归纳总结的能力。五、教学过程:(一)创设情境(生活实例中抽象出几个数学模型)1.如果张红购买每千克1元的蔬菜x千克,那么她需要付的钱数p=x元,这里p是s的函数.2.如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数.3.如果正方体的边长为a,那么正方体的体积V=a3,这里V是a的函数4.如果正方形场地的面积为S,那么正方形的边长a=S1/2,这里a是S的函数.5.如果某人ts内骑车行进了1km,那么他骑车的平均速度v=t-1km/s,这里v是t的函数.【思考】上述函数解析式有什么形式特征?具有什么共同点?(教师将解析式写成指数幂形式,以启发学生归纳,板书课题并归纳幂函数的定义。)(二)探究幂函数的概念、图象和性质1.幂函数的定义如果一个函数,底数是自变量x,指数是常量α,即y=x,这样的函数称为幂函数.如α【练】为了加深对定义的理解,让学生判别下列函数中有几个幂函数?212x2(1)y=x+x(2)y=(3)y=2(4)y=2(5)y=2x(6)y=x3xx22.幂函数的图象和性质【1】通过几何画板演示让学生认识到,幂函数的图象因a的不同而形状各异【2】引导学生从5个具体幂函数的图象入手,研究幂函数的性质①画出的图象(重点画y=x3和y=x1/2的图象----学生画,再用几何画板演示)2312学生活动:1.学生自己说出作图步骤,交流讨论单调性。学生活动:2.观察交流,分析图像还有那些特点?3.观察函数值和自变量取值有什么特点?我们还可以看到,f(x)=x3的图像关于原点对称.并且对任意的x,f(-x)=(-x)3=-x3,即f(-x)=-f(x).(三)奇函数、偶函数的定义一般地,图像关于原点对称的函数叫作奇函数,即f(-x)=-f(x);反之,满足f(-x)=-f(x)的函数y=f(x)一定是奇函数。2学生通过类比,自己找出偶函数的定义,可以建议利用y=x的图像特征?一定是偶函数。当函数f(x)是奇函数或偶函数时,称函数具有奇偶性。例1:画出下列函数的图像,判断奇偶性.1f(x)=-3x-1;(2)f(x)=x2,x∈﹙-3,3〕3f(x)=x2-3;4f(x)=2(x+1)2+1图像关于y轴对称的函数叫作偶函数,即f(-x)=f(x);反之,满足f(-x)=f(x)的函数y=f(x)学生活动:思考讨论:1.总结奇偶性对函数定义域的要求.2.总结利用图像法判断函数奇偶性(四)根据定义法判断奇偶性例2.判断f(x)=-2x5和g(x)=x4+2的奇偶性.由于从图像上进行观察是一种常用而又较为粗略的方法,严格的说,它需要根据奇偶函数的定义进行证明。学生自己先动手证明,教师一旁指导。要注意书写规范,并讨论交流定义法证明的步骤。例3学生活动:动手实践在图2-28中,只画出了函数图象的一半,请你画出它们的另一半,并说出画法的依据.结论:在研究函数时,如果知道其图像具有关于原点或y轴对称的特点,那么我们可以先研究它的一半,再利用对称性了解另一半,从而可以减少工作量.六.归纳小结:(学生自己交流总结)1.本节课学习的主要知识是什么?2.如何确定函数的奇偶性,其定义域有何特征?3.思考讨论填写常用幂函数规律表。七.作业:课本第50页A组12,2,312,4选做:B组、第2题八.板书设计:简单的幂函数α一.定义:形如y=x,α是常量.二.奇、偶函数的定义:三.定义证明奇偶性。(教师板演)八.教学反思:幂函数的课件3各位专家领导:早上好!今天我将要为大家讲的课题是幂函数。一、说教材1、教材的地位和作用:《幂函数》选自高一数学新教材必修1第2章第3节。幂函数是继指数函数和对数函数后研究的又一基本函数。通过本节课的学习,学生将建立幂函数这一函数模型,并能用系统的眼光看待以前已经接触的函数,进一步确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识,因而本节课更是一个对学生研究函数的方法和能力的综合提升。2、教学目标根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如
本文标题:幂函数的课件(通用4篇)
链接地址:https://www.777doc.com/doc-12025704 .html