您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 小学数学等差数列教案【4篇】
参考资料,少熬夜!小学数学等差数列教案【4篇】【导读指引】三一刀客最漂亮的网友为您整理分享的“小学数学等差数列教案【4篇】”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!数学等差数列教案【第一篇】[教学目标]1、知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。2、过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。3、情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。[教学重难点]1、教学重点:等差数列的概念的理解,通项公式的推导及应用。2、教学难点:(1)对等差数列中“等差”两字的把握;(2)等差数列通项公式的推导。[教学过程]一。课题引入创设情境引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)二、新课探究(一)等差数列的定义1、等差数列的定义如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。(1)定义中的关健词有哪些?(2)公差d是哪两个数的差?(二)等差数列的通项公式探究1:等差数列的通项公式(求法一)如果等差数列首项是,公差是,那么这个等差数列如何表示?呢?根据等差数列的定义可得:因此等差数列的通项公式就是:,探究2:等差数列的通项公式(求法二)根据等差数列的定义可得:将以上-1个式子相加得等差数列的通项公式就是:,参考资料,少熬夜!三、应用与探索例1、(1)求等差数列8,5,2,…,的第20项。(2)等差数列-5,-9,-13,…,的第几项是–401?(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得成立,实质上是要求方程的正整数解。例2、在等差数列中,已知=10,=31,求首项与公差d.解:由,得。在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。巩固练习1、等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=()。2、一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。四、小结1、等差数列的通项公式:公差;2、等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;3、判断一个数列是否为等差数列只需看是否为常数即可;4、利用从特殊到一般的思维去发现数学系规律或解决数学问题。五、作业:1、必做题:课本第40页习题第1,3,5题2、选做题:如何以最快的速度求:1+2+3+???+100=等差数列学案小学数学等差数列教案【第二篇】1.知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。2.过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。3.情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。等差数列的概念及通项公式。(1)理解等差数列“等差”的特点及通项公式的含义。(2)等差数列的通项公式的推导过程及应用。教具:多媒体、实物投影仪1.回忆上一节课学习数列的定义,请举出一个具体的例子。表示数列有哪几种方法——列举法、通项公式、递推公式。我参考资料,少熬夜!们这节课接着学习一类特殊的数列——等差数列。2.由生活中具体的数列实例引入(1).国际奥运会早期,撑杆跳高的记录近似的由下表给出:你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?(2)某剧场前10排的座位数分别是:48、46、44、42、40、38、36、34、32、30引导学生观察:数列①、②有何规律?引导学生发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差,数列②从左到右相差-2。如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。强调以下几点:①“从第二项起”满足条件;②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);所以上面的2、3都是等差数列,他们的公差分别为,-2。在学生对等差数列有了直观认识的基础上,我将给出练习题,以巩固知识的学习。[练习一]判断下列各组数列中哪些是等差数列,哪些不是?如果是,写出首项a1和公差d,如果不是,说明理由。,5,7,……√d=2,6,3,0,-3,……√d=-33.0,0,0,0,0,0,…….;√d=04.1,2,3,2,3,4,……;×5.1,0,1,0,1,……×在这个过程中我将采用边引导边提问的方法,以充分调动学生学习的积极性。如果等差数列{an}首项是a1,公差是d,那么根据等差数列的定义可得:a2-a1=d即:a2=a1+da3–a2=d即:a3=a2+d=a1+2da4–a3=d即:a4=a3+d=a1+3d……猜想:a40=a1+39d进而归纳出等差数列的通项公式:an=a1+(n-1)d此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:n=a1+(n-1)da2-a1=da3-a2=d参考资料,少熬夜!a4-a3=d……an–a(n-1)=d将这(n-1)个等式左右两边分别相加,就可以得到an-a1=(n-1)d即an=a1+(n-1)d(ⅰ)当n=1时,(ⅰ)也成立,所以对一切n∈n﹡,上面的公式(ⅰ)都成立,因此它就是等差数列{an}的通项公式。例1求等差数列,12,8,4,0,…的第10项;20项;第30项;例2-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?练习a组第1题和第2题(要求学生在规定时间内做完上述题目,教师提问)。目的:使学生熟悉通项公式对学生进行基本技能训练。(由学生总结这节课的收获)1.等差数列的概念及数学表达式。强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数2.等差数列的通项公式an=a1+(n-1)d会知三求一必做题:课本p284习题a组第3,4,5题高一数学等差数列教案【第三篇】一、教学内容分析本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的`极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。二、学生学习情况分析教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。三、设计思想1.教法⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极参考资料,少熬夜!性,发挥其创造性。⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。2.学法引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。用多种方法对等差数列的通项公式进行推导。在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。四、教学目标通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。五、教学重点与难点重点:①等差数列的概念。②等差数列的通项公式的推导过程及应用。难点:①理解等差数列“等差”的特点及通项公式的含义。②理解等差数列是一种函数模型。关键:等差数列概念的理解及由此得到的“性质”的方法。六、教学过程(略)高一数学等差数列教案【第四篇】教学准备教学目标掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。教学重难点掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。教学过程等比数列性质请同学们类比得出。参考资料,少熬夜!方法规律1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题。方程观点是解决这类问题的基本数学思想和方法。2、判断一个数列是等差数列或等比数列,常用的方法使用定义。特别地,在判断三个实数a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决。示范举例例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为。(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=.例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数。例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项。
本文标题:小学数学等差数列教案【4篇】
链接地址:https://www.777doc.com/doc-12056203 .html