您好,欢迎访问三七文档
1分式方程应用题常见的实际问题中等量关系1.工程问题1.工作量=工作效率×工作时间,工作效率=工作量工作时间,工作时间=工作量工作效率2.完成某项任务的各工作量的和=总工作量=12.营销问题1.商品利润=商品售价一商品成本价2.商品利润率=商品利润商品成本价×100%3.商品销售额=商品销售价×商品销售量4.商品的销售利润=(销售价一成本价)×销售量3.行程问题1.路程=速度×时间,速度=路程时间,时间=路程速度;2.在航行问题中,其中数量关系是(同样适用于航空):顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度3.两车相遇问题,其中数量关系是:两车相向:车头车尾相错时间=甲车长+乙车长速度和两车同向:车头车尾相错时间=甲车长+乙车长速度差(速度差=较大车速减较小车速)营销类应用性问题【例】某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每0.5kg少3元,比乙种原料每0.5kg多1元,问混合后的单价每0.5kg是多少元?总结升华:营销类应用性问题,涉及进货价、售货价、利润率、单价、混合价、赢利、亏损等概念,要结合实际问题对它们表述的意义有所了解.同时,要掌握好基本公式,巧妙建立关系式.随着市场经济体制的建立,这类问题具有较强的时代气息,因而成为中考常考的热点问题.2工程类应用性问题【例】某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?【变式2】今年某大学在招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位教师向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知教师甲的输入速度是教师乙的2倍,结果甲比乙少用2小时输完.问这两位教师每分钟各能输入多少名学生的成绩?行程中的应用性问题【例】甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h,比普通快车早4h到达乙地,求两车的平均速度.思路点拨:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程=速度×时间,应根据题意,找出追击问题中的等量关系.总结升华:列分式方程与列整式方程一样,注意找出应用题中数量间的相等关系,设好未知数,列出方程.不同之处是:所列方程是分式方程,最后进行检验,既要检验其是否为所列方程的解,还要检验是否符合题意,即满足实际意义.举一反三:【变式1】一队学生去校外参观.他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍行进速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?【变式2】农机厂职工到距工厂15千米的生产队检修农机,一部分人骑自行车先走,40分钟后,其余的人乘汽车出发,结果他们同时到达,已知汽车的速度是自行车的3倍,求两车的速度.3.【变式3】轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度..实战练习1、某校学生进行急行军训练,预计行60千米的路程在下午5时到达。后来由于把速度加快1/5,结果于下午4时到达。求原计划行军速度。2、甲、乙两人分别从距目的地6千米和10千米的两地同时出发,甲乙两人的速度比是3︰4,结果甲比乙提前20分钟到达目的地。求甲、乙的速度。3、某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑自行车行36千米所用的时间相等。求他步行40千米用多少小时?4、甲乙两辆汽车同时分别从A、B两城沿同一条高速公路驶向C城.已知A、C两城的距离为450千米,B、C两城的距离为400千米,甲车比乙车的速度快10千米/时,结果两辆车同时到达C城.求两车的速度.5、某校招生时,2640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.问这两个操作员每分钟各能输入多少名学生的成绩?6、某校学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,走了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是汽车同学速度的2倍,求骑自行车同学的速度.7、两个工程队共同参与一项筑路工程,甲队单独施工1个月完成工程的三分之一这时增加乙队,两队又共4同工作了半个月,总工程可以全部完成,哪个队的施工速度快?8、某班学生到距学校12千米的烈士陵园扫墓,一部分人骑自行车先行,经0.5时后,其余的人乘汽车出发,结果他们同时到达。已知汽车的速度是自行车的3倍,求自行车和汽车的速度.9、甲、乙二人同时从张庄出发,步行15千米到李庄。甲比乙每小时多走1千米,结果比乙早到半小时。二人每小时各走多少千米?10、甲、乙二人做某种机器零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,求甲乙每小时各做多少个11、行程问题:甲、乙二人乘不同的交通工具行进,甲每小行比乙每小时多行6千米,且甲走90千米的时间与乙走60千米所用的时间的相同,求甲乙二人的速度12、一般问题:商店里有甲、乙两中笔,甲笔的单价比乙贵6元,90元买甲种笔与60元买乙种笔的支数相等,求两种笔的单价。13、面积问题:甲乙两个矩形的面积分别是90cm2和60cm2它们的宽相等,甲的长比乙的长6cm,分别求两个矩形的长和宽514、浓度问题:甲乙两种溶液,甲的浓度比乙的浓度高6%,若90克甲种溶液与60克乙种溶液所含溶液相同。求甲乙两种溶液的浓度。15、某超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元?16、在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?17、面对全球金融危机的挑战,我国政府毅然启动内需,改善民生。国务院决定从2009年2月1日起,“家电下乡”在全国范围内实施,农民购买人选产品,政府按原价购买总额的13%给予补贴返还。某村委会组织部分农民到商场购买人选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元。根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?(1)设购买电视机x台,依题意填充下列表格:项目家电种类购买数量(台)原价购买总额(元)政府补贴返还比例补贴返还总金额(元)每台补贴返还金额(元)冰箱4000013%电视机x1500013%(2)列出方程(组)并解答.18、由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若按各自完成的工程量6分配这笔钱,问甲、乙两队各得到多少元?19、一个工厂接了一个订单,加工生产720t产品,预计每天生产48t,就能按期交货,后来,由于市场行情变化,订货方要求提前5天完成,问:工厂应每天生产多少吨?20、近几年高速公路建设有较大的发展,有力地促进了经济建设.欲修建的某高速公路要招标.现有甲、乙两个工程队,若甲、乙两队合作,24天可以完成,费用为120万元;若甲单独做20天后剩下的工程由乙做,还需40天才能完成,这样所需费用110万元,问:(1)甲、乙两队单独完成此项工程,各需多少天?(2)甲、乙两队单独完成此项工程,各需多少万元?21、周末某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一路程所用时间之比为2︰3.(1)直接写出甲、乙两组行进速度之比.(2)当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2km,试求山脚到山顶的路程.(3)在第(2)题所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B处与乙组相遇,请你先根据以上情景提出一个相应的间题,再给予解答.(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有己知条件).22、一名同学计划步行30千米参观博物馆,因情况变化改骑自行车,且骑车的速度是步行速度的1.5倍,才能按要求提前2小时到达,求这位同学骑自行车的速度。列分式方程解应用题:71、某车间加工1200个零件后,采用了新工艺,功效是原来的1.5倍,这样加工同样多就少用10小时。采用新工艺前、后每时分别加工多少个零件?2、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总款为4800元,第二次捐款人数为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为x人,那么x满足怎样的方程?3、甲、乙两地相距360km,新修的高速公路开通后,在甲、乙两地间行驶的长途客运车平均车速提高了50%,而从甲地到乙地的时间缩短了2小时,试确定原来的平均车速。4、某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务,求引进新设备前平均每天修路多少米?5、某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?6、在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,求小林每分钟跳几下?7、在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.乙队单独完成这项工程需要多少天?88、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.今年三月份甲种电脑每台售价多少元?9、某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?10、北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?11.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计
本文标题:分式方程应用题
链接地址:https://www.777doc.com/doc-1208405 .html