您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 河南省洛阳市高一下学期期末数学试卷
比知识你海纳百川,比能力你无人能及,比心理你处变不惊,比信心你自信满满,比体力你精力充沛,综上所述,高考这场比赛你想不赢都难,祝高考好运,考试顺利。2015-2016学年河南省洛阳市高一(下)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.集合A={(x,y)|y=3x﹣2},B={(x,y)|y=x+4},则A∩B=()A.{3,7}B.{(3,7)}C.(3,7)D.[3,7]2.计算:1﹣2sin2105°=()A.﹣B.C.﹣D.3.过点(3,1)且与直线x﹣2y﹣3=0垂直的直线方程是()A.2x+y﹣7=0B.x+2y﹣5=0C.x﹣2y﹣1=0D.2x﹣y﹣5=04.下列函数中,最小正周期为π且图象关于y轴对称的函数是()A.y=sin2x+cos2xB.y=sinx•cosxC.y=|cos2x|D.y=sin(2x+)5.如图所示的程序框图输出的结果是S=5040,则判断框内应填的条件是()A.i≤7B.i>7C.i≤6D.i>66.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:x3456y2.53m4.5据相关性检验,这组样本数据具有线性相关关系,求得其回归方程是=0.7x+0.35,则实数m的值为()A.3.5B.3.85C.4D.4.157.在区间[﹣1,2]上随机取一个数,则﹣1<2sin<的概率为()A.B.C.D.8.一个几何体的三视图如图所示,则这个几何体的体积等于()A.12B.C.D.49.设向量=(1,sinθ),=(1,3cosθ),若∥,则等于()A.﹣B.﹣C.D.10.已知函数f(x)=sin(ωx+φ)(其中ω>0|φ|<)图象相邻对称轴的距离为,一个对称中心为(﹣,0),为了得到g(x)=cosωx的图象,则只要将f(x)的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位11.已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则坐标原点O与圆(x﹣)2+(y+)2=2的位置关系是()A.点O在圆外B.点O在圆上C.点O在圆内D.不能确定12.已知⊙O的半径为2,A为圆上的一个定点,B为圆上的一个动点,若点A,B,O不共线,且|﹣t|≥||对任意t∈R恒成立,则•=()A.4B.4C.2D.2二、填空题:本大题共4个小题,每小题5分.共20分.13.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2:3:5:2,现用分层抽样的方法抽出一个容量为n的样本,样本中A种型号的产品有16件,那么此样本的容量n=_______.14.如图程序运行后输出的结果是_______.15.设f(x)=msin(πx+α)+ncos(πx+β)+8,其中m,n,α,β均为实数,若f=_______.16.已知符号函数sgn(x)=,f(x)=x2﹣2x,则函数F(x)=sgn[f(x)]﹣f(x)的零点个数为_______.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知||=4,||=,(+)•(﹣2)=16.(1)求•;(2)求|+|.18.学校达标运动会后,为了解学生的体质情况,从中抽取了部分学生的成绩,得到一个容量为n的样本,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出了如图的频率分布直方图,已知[50,60)与[90,100]两组的频数分别为24与6.(1)求n及频率分布直方图中的x,y的值;(2)估计本次达标运动会中,学生成绩的中位数和平均数;(3)已知[90,100]组中有2名男生,4名女生,为掌握性别与学生体质的关系,从本组中选2名作进一步调查,求2名学生中至少有1名男生的频率.19.已知函数f(x)=cos(2ωx﹣)+sin2ωx﹣cos2ωx(ω>0)的最小正周期是π.(1)求函数f(x)图象的对称轴方程;(2)求函数f(x)的单调递增区间.20.如图,三棱柱ABC﹣A1B1C1的所有棱长都为1,且侧棱与底面垂直,M是BC的中点.(1)求证:A1C∥平面AB1M;(2)求直线BB1与平面AB1M所成角的正弦值;(3)求点C到平面AB1M的距离.21.已知f(x)=是奇函数,g(x)=x2+nx+1为偶函数.(1)求m,n的值;(2)不等式3f(sinx)•g(sinx)>g(cosx)﹣λ对任意x∈R恒成立,求实数λ的取值范围.22.如图,已知点A(﹣3,0),B(3,0),M是线段AB上的任意一点,在AB的同侧分别作正方形AMCD、MBEF,⊙P和⊙Q是两个正方形的外接圆,它们交于点M,N.(1)证明:直线MN恒过一定点S,并求S的坐标;(2)过A作⊙Q的割线,交⊙Q于G、H两点,求|AH|•|AG|的取值范围.2015-2016学年河南省洛阳市高一(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.集合A={(x,y)|y=3x﹣2},B={(x,y)|y=x+4},则A∩B=()A.{3,7}B.{(3,7)}C.(3,7)D.[3,7]【考点】交集及其运算.【分析】联立A与B中二元一次方程组成方程组,求出方程组的解即可得到两集合的交集即可.【解答】解:联立A与B中方程得:,消去y得:3x﹣2=x+4,解得:x=3,把x=3代入得:y=9﹣2=7,∴方程组的解为,∵A={(x,y)|y=3x﹣2},B={(x,y)|y=x+4},∴A∩B={(3,7)},故选:B.2.计算:1﹣2sin2105°=()A.﹣B.C.﹣D.【考点】二倍角的余弦.【分析】利用诱导公式,降幂公式,特殊角的三角函数值即可化简求值得解.【解答】解:1﹣2sin2105°=1﹣2sin275°=1﹣(1﹣cos150°)=﹣cos30°=﹣.故选:C.3.过点(3,1)且与直线x﹣2y﹣3=0垂直的直线方程是()A.2x+y﹣7=0B.x+2y﹣5=0C.x﹣2y﹣1=0D.2x﹣y﹣5=0【考点】直线的一般式方程与直线的垂直关系.【分析】由两直线垂直的性质可知,所求的直线的斜率k,然后利用直线的点斜式可求直线方程【解答】解:由两直线垂直的性质可知,所求的直线的斜率k=﹣2所求直线的方程为y﹣1=﹣2(x﹣3)即2x+y﹣7=0故选:A.4.下列函数中,最小正周期为π且图象关于y轴对称的函数是()A.y=sin2x+cos2xB.y=sinx•cosxC.y=|cos2x|D.y=sin(2x+)【考点】三角函数的周期性及其求法.【分析】利用两角和差的三角函数、诱导公式化简函数的解析式,再利用三角函数的周期性和奇偶性,判断各个选项是否正确,从而得出结论.【解答】解:由于y=sin2x+cos2x=sin(2x+)为非奇非偶函数,故它的图象不关于y轴对称,故排除A;由于y=sinx•cosx=sin2x,为奇函数,它的图象关于原点对称,故排除B;由于y=|cos2x|的周期为•=,故排除C;由于y=sin(2x+)=cos2x,它的周期为=π,且它为偶函数,它的图象关于y轴对称,故满足条件,故选:D.5.如图所示的程序框图输出的结果是S=5040,则判断框内应填的条件是()A.i≤7B.i>7C.i≤6D.i>6【考点】程序框图.【分析】根据程序输出的结果,得到满足条件的i的取值,即可得到结论.【解答】解:模拟执行程序框图,可得i=10,S=1满足条件,执行循环体,S=10,i=9满足条件,执行循环体,S=90,i=8满足条件,执行循环体,S=720,i=7满足条件,执行循环体,S=5040,i=6由题意,此时应该不满足条件,退出循环,输出S的值为5040.故判断框内应填入的条件是i>6.故选:D.6.某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:x3456y2.53m4.5据相关性检验,这组样本数据具有线性相关关系,求得其回归方程是=0.7x+0.35,则实数m的值为()A.3.5B.3.85C.4D.4.15【考点】线性回归方程.【分析】根据表格中所给的数据,求出这组数据的横标和纵标的平均值,表示出这组数据的样本中心点,根据样本中心点在线性回归直线上,代入得到关于m的方程,解方程即可.【解答】解:根据所给的表格可以求出=×(3+4+5+6)=4.5,=×(2.5+3+m+4.5)=,∵这组数据的样本中心点在线性回归直线上,∴=0.7×4.5+0.35,∴m=4,故选:C.7.在区间[﹣1,2]上随机取一个数,则﹣1<2sin<的概率为()A.B.C.D.【考点】几何概型.【分析】根据三角函数的不等式求出x的取值范围,结合几何概型的概率公式进行计算即可.【解答】解:由可﹣1<2sin<得﹣<sin<,∵﹣1≤x≤2,∴﹣≤≤,则﹣≤<,即﹣≤x<1,则对应的概率P===,故选:C8.一个几何体的三视图如图所示,则这个几何体的体积等于()A.12B.C.D.4【考点】由三视图求面积、体积.【分析】由已知中的三视图,我们易判断出这个几何体的形状及结构特征,进而求出底面各边长,求出底面面积和棱锥的高后,代入棱锥的体积公式,是解答本题的关键.【解答】解:由已知中的三视图可得这是一个底面为梯形的四棱锥其中底面的上底为2,下底为4,高为2,则底面面积S==6棱锥的高H为2则这个几何体的体积V===4故选D9.设向量=(1,sinθ),=(1,3cosθ),若∥,则等于()A.﹣B.﹣C.D.【考点】三角函数的化简求值;平面向量共线(平行)的坐标表示.【分析】根据两向量平行的坐标表示,利用同角的三角函数关系﹣﹣弦化切,即可求出答案.【解答】解:∵向量=(1,sinθ),=(1,3cosθ),∥,∴3cosθ=sinθ,可得:tanθ=3,∴====,故选:D.10.已知函数f(x)=sin(ωx+φ)(其中ω>0|φ|<)图象相邻对称轴的距离为,一个对称中心为(﹣,0),为了得到g(x)=cosωx的图象,则只要将f(x)的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由周期求得ω,根据图象的对称中心求得φ的值,可得函数的解析式,再根据函数y=Asin(ωx+φ)的图象变换规律得出结论.【解答】解:由题意可得函数的最小正周期为=2×,∴ω=2.再根据﹣×2+φ=kπ,|φ|<,k∈z,可得φ=,f(x)=sin(2x+),故将f(x)的图象向左平移个单位,可得y=sin[2(x+)+]=sin(2x+)=cos2x的图象,故选:D.11.已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则坐标原点O与圆(x﹣)2+(y+)2=2的位置关系是()A.点O在圆外B.点O在圆上C.点O在圆内D.不能确定【考点】分段函数的应用;对数函数的图象与性质;点与圆的位置关系.【分析】画出分段函数y=|lgx|的图象,求出ab关系,进而根据点与圆的位置关系定义,可得答案.【解答】解:画出y=|lgx|的图象如图:∵0<a<b,且f(a)=f(b),∴|lga|=|lgb|且0<a<1,b>1∴﹣lga=lgb即ab=1,则a+b>2,故坐标原点O在圆(x﹣)2+(y+)2=2外,故选:A.12.已知⊙O的半径为2,A为圆上的一个定点,B为圆上的一个动点,若点A,B,O不共线,且|﹣t|≥||对任意t∈R恒成立,则•=()A.4B.4C.2D.2【考点】平面向量数量积的运算.【分析】根据向量的减法的运算法则将向量进行化简,然后两边平方,设•=m,整理可得4t2﹣2tm﹣(4﹣2m)≥0恒成立,再由不等式恒成立思想,运用判别式小于等于0,解不等式即可.【解答】解:∵|﹣t|≥||,∴|﹣t|≥|﹣|,两边平方可得:2﹣2t•+t22
本文标题:河南省洛阳市高一下学期期末数学试卷
链接地址:https://www.777doc.com/doc-1217318 .html