您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 3二次函数应用.习题集(2013-2014)-学生版
中考解决方案第三阶段·模块课程·二次函数应用·学案Page1of11考点一:二次函数与商品最大利润☞考点说明:典型的二次函数实际应用问题,最终转化为求二次函数的最大值【例1】某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系1623mx(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式,并求出自变量的取值范围(2)试问当x取何值时,该商场销售这种商品可获得最大利润?【例2】已知某种水果的批发单价与批发量的函数关系如图所示.(1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大。批发量(kg)批发单价(元)O602045764080零售价(元)最高日销量(kg)O中考满分必做题中考解决方案第三阶段·模块课程·二次函数应用·学案Page2of11【例3】某公司生产一种产品,每件成本为2元,售价为3元,年销售量为100万件.为获取更好的效益,公司准备拿出一定资金做广告.通过市场调查发现:每年投入的广告费用为x(十万元)时,产品的年销售量将是原销售量的y倍;同时y又是x的二次函数,相互关系如下表:x012……y11.51.6……求y与x的函数关系式;(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元)的函数关系式;(3)如果一年投入的广告费为10~30万元,问广告费在什么范围内时,公司获得的年利润随广告费的增大而增大?【例4】甲、乙两个蔬菜基地,分别向A、B、C三个农贸市场提供同品种蔬菜,按签订的合同规定向A提供45t,向B提供75t,向C提供40t.甲基地可安排60t,乙基地可安排100t.甲、乙与A、B、C的距离千米数如表所示,设运费为1元/(kmt).问如何安排使总运费最低?求出最小的总运费值.ABC甲1056乙4815中考解决方案第三阶段·模块课程·二次函数应用·学案Page3of11【例5】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?考点二:二次函数与喷泉问题☞考点说明:典型的二次函数实际应用问题,最终转化为求二次函数的解析式以及点坐标的问题【例6】如图所示,为一自动喷灌设备,设水管OB高出地面1.5米,在B处有一个自动旋转的喷头,一瞬间,喷头的水流呈抛物线状,喷头B与水流最高点C的连线与水平地面成45角,水流的最高点C比喷头B高出2米,在所建的坐标系中,求水流的落地点离A点的距离是多少米?BCDAOyx中考解决方案第三阶段·模块课程·二次函数应用·学案Page4of11【例7】李明在进行投篮训练,他从距地面高1.55米处的O点向篮圈中心A点投出一球,球的飞行路线为抛物线,当球达到距地面最高点3.55米时,球移动的水平距离为2米.以O点为坐标原点,建立直角坐标系(如图所示),测得OA与水平方向OB的夹角为30°,A、B两点相距1.5米.(1)求篮球飞行路线所在抛物线的解析式;(2)判断李明这一投能否把球从O点直接投入篮圈A点(排除篮板球),如果能,请说明理由;如果不能,那么李明应向前或向后移动多少米,才能投入篮圈A点?(结果保留根号)考点三、拱形图问题【例8】某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物线拱高为5.6m.(1)在如图所示的平面直角坐标系中,求抛物线的表达式.(2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m.请计算最多可安装几扇这样的窗户?OxyAB中考解决方案第三阶段·模块课程·二次函数应用·学案Page5of11【例9】如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD-DC-CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?【例10】王强在一次高尔夫球的练习中,在某处击球,其飞行路线、满足抛物线21855yxx,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.(1)请写出抛物线的开口方向、顶点坐标、对称轴.⑵请求出球飞行的最大水平距离.⑶若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.(m)(m)球洞yxO中考解决方案第三阶段·模块课程·二次函数应用·学案Page6of11【例11】一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系(1)求抛物线的解析式;(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?xyOCBAP考点四面积问题【例12】正方形边长为3,若边长增加x,则面积增加y.求y与x之间的函数关系式.【例13】进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数关系式为()A.2(1)yaxB.2(1)yax2C.(1)yax2D.(1)yax【例14】有一边长为5米的正方形场地,现在要在里面建一矩形游泳池,如图所示,要求一边距场地边缘为x米,一边为2x米,求矩形的面积y与x的关系表达式.2xx中考解决方案第三阶段·模块课程·二次函数应用·学案Page7of11【例15】张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).(2)当x为何值时,S有最大值?并求出最大值.(参考公式:二次函数2yaxbxc(0a),当2bxa时)【例16】星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边的长为y米,直接写出y与x之间的函数关系式及其自变量x的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x的取值范围.墙18米苗圃园中考解决方案第三阶段·模块课程·二次函数应用·学案Page8of11【例17】某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD.已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.(1)求S与x之间的函数关系式,当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆.其圆心分别为1O和2O,且1O到AB、BC、AD的距离与2O到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(1)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.【例18】某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中2AB米,1BC米;上部CDG是等边三角形,固定点E为AB的中点.EMN△是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.(1)当MN和AB之间的距离为0.5米时,求此时EMN△的面积;(2)设MN与AB之间的距离为x米,试将EMN△的面积S(平方米)表示成关于x的函数;(3)请你探究EMN△的面积S(平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由.EBACDNMG围墙ADBCO1O2中考解决方案第三阶段·模块课程·二次函数应用·学案Page9of11【例19】如图,E、F分别是边长为4的正方形ABCD的边BCCD,上的点,413CECF,,直线EF交AB的延长线于G,过线段FG上的一个动点H作HMAG⊥,HNAD⊥,垂足分别为MN,,设HMx,矩形AMHN的面积为y(1)求y与x之间的函数关系式;(2)当x为何值时,矩形AMHN的面积最大,最大面积为多少?NMHGFEDCBA1.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数ykxb,且65x时,55y;75x时,45y.(1)求一次函数ykxb的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x的范围.2.某电视机生产厂家去年销往农村的某品牌电视机每台的售价y(元)与月份x之间满足函数关系502600yx,去年的月销售量p(万台)与月份x之间成一次函数关系,其中两个月的销售情况如下表:月份1月5月销售量3.9万台4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m的值(保留一位小数).(参考数据:345.831≈,355.916≈,376.083≈,386.164≈)最容易重现的真题中考解决方案第三阶段·模块课程·二次函数应用·学案Page10of113.如图,某小区广场要设计一个矩形花坛,花坛的长、宽分别为30m、20m,花坛中有一横一纵的两条通道,余下部分种植花卉.横纵通道的宽度均为xm.(1)求两条通道的总面积S与x的函数关系式,不要求写出自变量x的取值范围;(2)当种植花卉面为5512m时,求横、纵通道的宽度为多少米?mm20304.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,16ED米,8AE米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为
本文标题:3二次函数应用.习题集(2013-2014)-学生版
链接地址:https://www.777doc.com/doc-1221559 .html