您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 高中函数解题技巧方法总结
数学函数知识点总结1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。CBAxyyxCxyyBxyxA、、,,,如:集合lg|),(lg|lg|中元素各表示什么?A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹2.进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况(注重借助于数轴和文氏图解集合问题)空集是一切集合的子集,是一切非空集合的真子集。如:集合,AxxxBxax||22301若,则实数的值构成的集合为BAa(答:,,)1013显然,这里很容易解出A={-1,3}.而B最多只有一个元素。故B只能是-1或者3。根据条件,可以得到a=-1,a=1/3.但是,这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。3.注意下列性质:()集合,,……,的所有子集的个数是;1212aaann要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在)。同样,对于元素a2,a3,……an,都有2种选择,所以,总共有2n种选择,即集合A有2n个子集。当然,我们也要注意到,这2n种情况之中,包含了这n个元素全部在和全部不在的情况,故真子集个数为21n,非空真子集个数为22n;)若(BBAABABA2(3)德摩根定律:CCCCCCUUUUUUABABABAB,4.你会用补集思想解决问题吗?(排除法、间接法)如:已知关于的不等式的解集为,若且,求实数xaxxaMMMa50352的取值范围。(∵,∴·∵,∴·,,)335305555015392522MaaMaaa5.熟悉命题的几种形式、()()().可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和“非”1.若为真,当且仅当、均为真pqpq2.若为真,当且仅当、至少有一个为真pqpq3,若为真,当且仅当为假pp命题的四种形式及其相互关系是什么?答:(互为逆否关系的命题是等价命题。)原命题与逆否命题同真、同假;逆命题与否命题同真同假。6.熟悉充要条件的性质(高考经常考)xxA|{满足条件}p,xxB|{满足条件}q,若;则p是q的充分非必要条件BA_____;若;则p是q的必要非充分条件BA_____;若;则p是q的充要条件BA_____;若;则p是q的既非充分又非必要条件___________;7.对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。)注意映射个数的求法。如集合A中有m个元素,集合B中有n个元素,则从A到B的映射个数有nm个。如:若}4,3,2,1{A,},,{cbaB;问:A到B的映射有个,B到A的映射有个;A到B的函数有个,若}3,2,1{A,则A到B的一一映射有个。8.求函数的定义域有哪些常见类型?例:函数的定义域是yxxx432lg(答:,,,)022334函数定义域求法:(1).分式中的分母不为零;(2).偶次方根下的数(或式)大于或等于零;(3).指数式的底数大于零且不等于一;(4).对数式的底数大于零且不等于一,真数大于零。(5).正切函数xytankkxRx,2,且(6).余切函数xycotkkxRx,,且9.如何求复合函数的定义域?的定,则函数,,的定义域是如:函数)()()(0)(xfxfxFabbaxf义域是_____________。(答:,)aa复合函数定义域的求法:已知)(xfy的定义域为nm,,求)(xgfy的定义域,可由nxgm)(解出x的范围,即为)(xgfy的定义域。例:若函数)(xfy的定义域为2,21,则)(log2xf的定义域为。分析:由函数)(xfy的定义域为2,21可知:221x;所以)(log2xfy中有2log212x。解:依题意知:2log212x解之,得:42x∴)(log2xf的定义域为42|xx10.函数值域的求法(1)、配方法配:求二次函数值域最基本的方法之一。例、求函数y=2x-2x+5,x[-1,2]的值域。(2)、判别式法:对二次函数或者分式函数(分子或分母中有一个是二次)都可通用(3)、反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。例求函数y=6543xx值域。(4)、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。例求函数y=11xxee,2sin11siny,2sin11cosy的值域。222110112sin11|sin|||1,1sin22sin12sin1(1cos)1cos2sincos114sin()1,sin()41sin()114即又由知解不等式,求出,就是要求的答案xxxeyyeyeyyyyyyyyyxyxyyxyy(5)、函数单调性法:通常和导数结合,是最近高考考的较多的一个内容例:求函数y=25xlog31x(2≤x≤10)的值域(6)、换元法:通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。例:求函数y=x+1x的值域。(7)、数形结合法:其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单。例:求函数y=1362xx+542xx的值域解:原函数可变形为:y=)20()3(22x+)10()2(22x上式可看成x轴上的点P(x,0)到两定点A(3,2),B(-2,-1)的距离之和,由图可知当点P为线段与x轴的交点时,ymin=∣AB∣=)12()23(22=43,故:所求函数的值域为[43,+∞)。(8)、不等式法:利用基本不等式a+b≥2ab,a+b+c≥3abc3(a,b,c∈R),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。例:(9).倒数法:有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况例:求函数y=32xx的值域2320121112202222012时,时,=00xyxxxxyyxxxyy11.反函数存在的条件是什么?(一一对应函数)求反函数的步骤:①反解x;②互换x、y;③注明定义域如:求函数的反函数fxxxxx()1002(答:)fxxxxx1110()12.反函数的性质:1.反函数的定义域是原函数的值域(可扩展为反函数中的x对应原函数中y)2.反函数的值域是原函数的定义域(可扩展为反函数中的y对应原函数中的x)3.反函数的图像和原函数关于直线=x对称(难怪点(x,y)和点(y,x)关于直线y=x对称①互为反函数的图象关于直线y=x对称;②保存了原来函数的单调性、奇函数性;③设的定义域为,值域为,,,则yf(x)ACaAbCf(a)=bf1()baffafbaffbfab111()()()(),13.如何用定义证明函数的单调性?(取值、作差、判正负)判断函数单调性的方法:332(0)11113333222x=xx(应用公式a+b+c时,注意使者的乘积变成常数)xxxxxxabc根据定义,设任意得x1,x2,找出f(x1),f(x2)之间的大小关系可以变形为求1212()()fxfxxx的正负号或者12()()fxfx与1的关系如:求的单调区间yxxlog1222(设,由则uxxux22002且,,如图:log12211uuxuO12x当,时,,又,∴xuuy(]log0112当,时,,又,∴xuuy[)log1212∴……)14.如何利用导数判断函数的单调性?在区间,内,若总有则为增函数。(在个别点上导数等于abfxfx'()()0零,不影响函数的单调性),反之也对,若呢?fx'()0如:已知,函数在,上是单调增函数,则的最大afxxaxa013()值是()B.1C.2D.3(令fxxaxaxa'()333302则或xaxa33由已知在,上为增函数,则,即fxaa()[)1313∴a的最大值为3。15.复合函数奇偶性:在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。16.若f(x)是奇函数且定义域内有原点,则f(x)=0。如:若·为奇函数,则实数fxaaaxx()2221(∵为奇函数,,又,∴fxxRRf()()000即·,∴)aaa2221010017.判断函数奇偶性的方法1、定义域法:一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数.2、奇偶函数定义法:在给定函数的定义域关于原点对称的前提下,计算)(xf,然后根据函数的奇偶性的定义判断其奇偶性.这种方法可以做如下变形f(x)+f(-x)=0奇函数f(x)-f(-x)=0偶函数f(x)1偶函数f(-x)f(x)1奇函数f(-x)18.你熟悉周期函数的定义吗?如:若,则fxafx()(答:是周期函数,为的一个周期)fxTafx()()2我们在做题的时候,经常会遇到这样的情况:告诉f(x)+f(x+t)=0,要马上反应过来,这时说这个函数周期2t.推导:()()0()(2)()(2)0fxfxtfxfxtfxtfxt,同时可能也会遇到这种样子:f(x)=f(2a-x),或者说f(a-x)=f(a+x).其实这都是说同样一个意思:函数f(x)关于直线对称,对称轴可以由括号内的2个数字相加再除以2得到。比如,f(x)=f(2a-x),或者说f(a-x)=f(a+x)就都表示函数关于直线x=a对称。如:()()()()()()(2)(2)(2)()(2)2,222,()(22)()(22),()2||(,,,fxxaxbfaxfaxfbxfbxfxfaxfaxfbxfxfbxtaxbxtbaftftbafxfxbafxbaab又如:若图象有两条对称轴,即,令则即所以函数以为周期因不知道的大小关系为保守起见我加了一个绝对值19.你掌握常用的图象变换了吗?fxfxy()()与的图象关于轴对称联想点(x,y),(-x,y)fxfxx()()与的图象关于轴对称联想点(x,y),(x,-y)fxfx()()与的图象关于原点对称联想点(x,y),(-x,-y)fxfxyx()()与的图象关于直线对称1联想点(x,y),(y,x)fxfaxxa()()与的图象关于直线对称2联想点(x,y),(2a-x,y)fxfaxa()()()与的图象关于点,对称20联想点(x,y),(2a-x,0)将图象左移个单位右移个单位yfxaaaayfxayfxa()()()()()00上移个单位下移个单位bbbbyfxabyfxab
本文标题:高中函数解题技巧方法总结
链接地址:https://www.777doc.com/doc-1225392 .html