您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高一数学必修二教案精编5篇
好文供参考!1/17高一数学必修二教案精编5篇【引读】这篇优秀的文档“高一数学必修二教案精编5篇”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!高一数学必修二教案1教学目标:使学生初步理解集合的基本概念,了解“属于”关系的意义、常用数集的记法和集合中元素的特性。了解有限集、无限集、空集概念,教学重点:集合概念、性质;“∈”,的使用教学难点:集合概念的理解;课型:新授课教学手段:教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),好文供参考!2/17即是一些研究对象的总体。研究集合的数学理论在现代数学中称为集合论,它不仅是数学的一个基本分支,在数学中占据一个极其独特的地位,如果把数学比作一座宏伟大厦,那么集合论就是这座宏伟大厦的基石。集合理论是由德国数学家康托尔,他创造的集合论是近代许多数学分支的基础。(参看阅教材中读材料P17)。下面几节课中,我们共()同学习有关集合的一些基础知识,为以后数学的学习打下基础。二、新课教学“物以类聚,人以群分”数学中也有类似的分类。如:自然数的集合0,1,2,3,……如:2x-13,即x2所有大于2的实数组成的集合称为这个不等式的解集。如:几何中,圆是到定点的距离等于定长的点的集合。1、一般地,指定的某些对象的全体称为集合,标记:A,B,C,D,…集合中的每个对象叫做这个集合的元素,标记:a,b,c,d,…2、元素与集合的关系a是集合A的元素,就说a属于集合A,记作a∈A,a不是集合A的元素,就说a不属于集合A,记作思考1:列举一些集合例子和不能构成集合的例子,对学好文供参考!3/17生的例子予以讨论、点评,进而讲解下面的问题。例1:判断下列一组对象是否属于一个集合呢?(1)小于10的质数(2)数学家(3)中国的直辖市(4)maths中的字母(5)book中的字母(6)所有的偶数(7)所有直角三角形(8)满足3x-2x+3的全体实数(9)方程的实数解评注:判断集合要注意有三点:范围是否确定;元素是否明确;能不能指出它的属性。3、集合的中元素的三个特性:1、元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。2、元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。比如:book中的字母构成的集合3、元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。集合元素的三个特性使集合本身具有了确定性和整体性。4、数的集简称数集,下面是一些常用数集及其记法:非负整数集(即自然数集)记作:N有理数集Q好文供参考!4/17正整数集N__或N+实数集R整数集Z注:实数的分类5、集合的分类原则:集合中所含元素的多少①有限集含有限个元素,如A={-2,3}②无限集含无限个元素,如自然数集N,有理数③空集不含任何元素,如方程x2+1=0实数解集。专用标记:Φ三、课堂练习1、用符合“∈”或填空:课本P15练习惯12、判断下面说法是否正确、正确的在()内填“√”,错误的填“×”(1)所有在N中的元素都在N__中()(2)所有在N中的元素都在Z中()(3)所有不在N__中的数都不在Z中()(4)所有不在Q中的实数都在R中()(5)由既在R中又在N__中的数组成的集合中一定包含数0()(6)不在N中的数不能使方程4x=8成立()四、回顾反思1、集合的概念2、集合元素的三个特征其中“集合中的元素必须是确定的”应理解为:对于一个好文供参考!5/17给定的集合,它的元素的意义是明确的。“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的。3、常见数集的专用符号。五、作业布置1、下列各组对象能确定一个集合吗?(1)所有很大的实数(2)好心的人(3)1,2,2,3,4,5.2、设a,b是非零实数,那么可能取的值组成集合的元素是3、由实数x,-x,|x|,所组成的集合,最多含()(A)2个元素(B)3个元素(C)4个元素(D)5个元素4、下列结论不正确的是()∈NB.QQD.-1∈Z5、下列结论中,不正确的是()A.若a∈N,则-aNB.若a∈Z,则a2∈ZC.若a∈Q,则|a|∈QD.若a∈R,则6、求数集{1,x,x2-x}中的元素x应满足的条件;高一数学必修2教案2一、教学目标好文供参考!6/171.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。二、教学重难点:重点:画出简单几何体、简单组合体的三视图;难点:识别三视图所表示的空间几何体。三、学法指导:观察、动手实践、讨论、类比。四、教学过程(一)创设情景,揭开课题展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。(二)讲授新课1、中心投影与平行投影:中心投影:光由一点向外散射形成的投影;平行投影:在一束平行光线照射下形成的投影。正投影:在平行投影中,投影线正对着投影面。2、三视图:好文供参考!7/17正视图:光线从几何体的前面向后面正投影,得到的投影图;侧视图:光线从几何体的左面向右面正投影,得到的投影图;俯视图:光线从几何体的上面向下面正投影,得到的投影图。三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。三视图的画法规则:长对正,高平齐,宽相等。长对正:正视图与俯视图的长相等,且相互对正;高平齐:正视图与侧视图的高度相等,且相互对齐;宽相等:俯视图与侧视图的宽度相等。3、画长方体的三视图:正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。4、画圆柱、圆锥的三视图:5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。(三)巩固练习课本P15练习1、2;P20习题[A组]2。好文供参考!8/17(四)归纳整理请学生回顾发表如何作好空间几何体的三视图(五)布置作业课本P20习题[A组]1。高一数学必修二教案3学习目标1、结合已学过的数学实例,了解归纳推理的含义;2.能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用。2、结合已学过的数学实例,了解类比推理的含义;3、能利用类比进行简单的推理,体会并认识合情推理在数学发现中的作用。学习过程一、课前准备问题3:因为三角形的内角和是,四边形的内角和是,五边形的内角和是……所以n边形的内角和是新知1:从以上事例可一发现:叫做合情推理。归纳推理和类比推理是数学中常用的合情推理。新知2:类比推理就是根据两类不同事物之间具有好文供参考!9/17推测其中一类事物具有与另一类事物的性质的推理。简言之,类比推理是由的推理。新知3归纳推理就是根据一些事物的,推出该类事物的的推理。归纳是的过程例子:哥德巴赫猜想:观察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,16=13+3,18=11+7,20=13+7,……,50=13+37,……,100=3+97,猜想:归纳推理的一般步骤1通过观察个别情况发现某些相同的性质。2从已知的相同性质中推出一个明确表达的一般性命题(猜想)。※典型例题例1用推理的形式表示等差数列1,3,5,7……2n-1,……的前n项和Sn的归纳过程。变式1观察下列等式:1+3=4=,1+3+5=9=,1+3+5+7=16=,1+3+5+7+9=25=,……你能猜想到一个怎样的结论?好文供参考!10/17变式2观察下列等式:1=11+8=9,1+8+27=36,1+8+27+64=100,……你能猜想到一个怎样的结论?例2设计算的值,同时作出归纳推理,并用n=40验证猜想是否正确。变式:(1)已知数列的第一项,且,试归纳出这个数列的通项公式例3:找出圆与球的相似之处,并用圆的性质类比球的有关性质。圆的概念和性质球的类似概念和性质圆的周长圆的面积圆心与弦(非直径)中点的连线垂直于弦与圆心距离相等的弦长相等,※动手试试1、观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,由此可以归纳出什么规律?2如果一条直线和两条平行线中的一条相交,则必和另一好文供参考!11/17条相交。3如果两条直线同时垂直于第三条直线,则这两条直线互相平行。三、总结提升※学习小结1、归纳推理的定义。2、归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想)。3、合情推理仅是“合乎情理”的推理,它得到的结论不一定真,但合情推理常常帮我们猜测和发现新的规律,为我们提供证明的思路和方法高一数学必修2教案4一、教学目标1.知识与技能:(1)通过实物操作,增强学生的直观感知。(2)能根据几何结构特征对空间物体进行分类。(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。(4)会表示有关于几何体以及柱、锥、台的分类。2.过程与方法:好文供参考!12/17(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。(2)让学生观察、讨论、归纳、概括所学的知识。3.情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。(2)培养学生的空间想象能力和抽象括能力。二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。三、教学用具(1)学法:观察、思考、交流、讨论、概括。(2)实物模型、投影仪。四、教学过程(一)创设情景,揭示课题1、由六根火柴最多可搭成几个三角形?(空间:4个)2、在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?3、展示具有柱、锥、台、球结构特征的空间物体。问题:请根据某种标准对以上空间物体进行分类。(二)、研探新知好文供参考!13/17空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;旋转体(轴):圆柱、圆锥、圆台、球。1、棱柱的结构特征:(1)观察棱柱的几何物体以及投影出棱柱的图片,思考:它们各自的特点是什么?共同特点是什么?(学生讨论)(2)棱柱的主要结构特征(棱柱的概念):①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。(3)棱柱的表示法及分类:(4)相关概念:底面(底)、侧面、侧棱、顶点。2、棱锥、棱台的结构特征:(1)实物模型演示,投影图片;(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。3、圆柱的结构特征:好文供参考!14/17(1)实物模型演示,投影图片——如何得到圆柱?(2)根据圆柱的概念、相关概念及圆柱的表示。4、圆锥、圆台、球的结构特征:(1)实物模型演示,投影图片——如何得到圆锥、圆台、球?(2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。5、柱体、锥体、台体的概念及关系:探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?圆柱、圆锥、圆台呢?6、简单组合体的结构特征:(1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。(2)实
本文标题:高一数学必修二教案精编5篇
链接地址:https://www.777doc.com/doc-12263216 .html