您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 小学六年级数学下册教案精编5篇
参考资料,少熬夜!小学六年级数学下册教案精编5篇【导读指引】三一刀客最漂亮的网友为您整理分享的“小学六年级数学下册教案精编5篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!七年级数学下册教案1人教版七年级数学下册《平方根》教学设计PPT课件导学案教案课题:平方根(1)教学目标1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;3、通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。教学难点根据算术平方根的概念正确求出非负数的算术平方根。知识重点算术平方根的概念。教学过程(师生活动)设计理念情境导入同学们,20xx年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示“神舟”五号飞船升空时的画面).那么,你们知道宇宙飞船离开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度(米/秒)而小于第二宇宙速度:(米/秒).、的大小满足。怎样求、呢?这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.请看下面的问题.“神舟”五号成功发射和安全着陆,标志着我国在攀登世界科技高峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是已知幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路.提出问题感知新知多媒体展示教科书第160页的问题(问题略),然后提出问题:你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)这个问题相当于在等式扩=25中求出正数x的值.参考资料,少熬夜!练习:教科书第160页的填表.练习:教科书第160页的填表.这个问题抽象成数学问题就是已知正方形的面积求正方形的边长,这与学生以前学过的已知正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。归纳新知上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题.实际上是乘方运算中,已知一个数的指数和它的幂求这个数.一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.也就是,在等式=a(x≥0)中,规定x=。思考:这里的数a应该是怎样的数呢?试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.想一想:下列式子表示什么意思?你能求出它们的值吗?建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根,因为……也可以写成,读作“二次根号a”。算术平方根的概念比较抽象,原因之一是学生对石这个新的符号的理解要有一个过程.通过此问题,使学生对符号“而”表示的具体含义有更具体、更深刻的认识.应用新知例.(课本第160页的例1)求下列各数的算术平方根:(1)100;(2)1;(3);(4)建议:首先应让学生体验一个数的算术平方根应满足怎样的等式,应该用怎样的记号来表示它,在此基础上再求出结果,例如求100的算术平方根,就是求一个数x,使=100,因为例题的解答展示了求数的算术平方根的思考过程.在开始阶段,宜让学生适当模仿,熟练后可以直接写出结果.探究拓展提出问题:(课本第160页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?方法1:课本中的方法,略;方法2:可还有其他方法,鼓励学生探究。问题:这个大正方形的边长应该是多少呢?大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?建议学生观察图形感受的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.教科书在边空提出问题“小正方形的对角线的长是多少”,参考资料,少熬夜!这是为在10.3节介绍在数轴上画出表示的点做准备.小结与作业课堂小结提问:1、这节课学习了什么呢?2、算术平方根的具体意义是怎么样的?3、怎样求一个正数的算术平方根?布置作业3、必做题:课本第167页习题第1、2、3题;168页第11题。4、备选题:(1)判断下列说法是否正确:i.是25的算术平方根;ii.一6是的算术平方根;iii.0的算术平方根是0;iv.是的算术平方根;⑤一个正方形的边长就是这个正方形的面积的算术平方根.(2)下列各式哪些有意义,哪些没有意义?①-②③④(3)一个正方形的面积为10平方厘米,求以这个正方形的边为直径的圆的面积。在本节的第一个“探究”栏目之前,重点是介绍算术平方根的概念,因此所涉及的数(包括例题中的数)都是完全平方数(能表示成一个有理数的平方),所求的是这些完全平方数的算术平方根.本课教育评注(课堂设计理念,实际教学效果及改进设想)本节课是本章的第一节课,主要是要建立算术平方根的概念为了使学生体会引入算术平方根的`必要性,感受新数(无理数)的产生是实际生活和科学技术发展的需要,也为了激发学生的学习热情,所以章前图的学习不要省略.特别地应提醒学生这里求速度的问题实际上是已知幂和乘方求底数的问题,是一个新的数学问题.通过一个简单的实际问题,引人算术平方根的概念对学生来说是容易接受并有兴趣的.教学中要注意算术平方根的非负性,对它的符号的理解与接受要有一个过程,但这也是最重要的,能从根号很自然地联想到算术平方根的意义(应满足的一个等式)这是学好平方根概念的基本保证,所以在例题之前安排了试一试和想一想,教师还可根据学生实际情况进行有关的训练.通过对两个小正方形拼成一个大正方形的探究活动,一方面是培养学生的动手能力和思维能力,调动学生的学习积极性,另一方面是使学生理解引人算术平方根符号的必要性,明确有些正数的算术平方根不能容易地求得,为下节课的学习做准备.七年级数学下册教案2教学目标1、知识与能力目标:借助于数轴,初步理解绝对值的概参考资料,少熬夜!念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。2、过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。3、情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。教学重点与难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。教学准备多媒体课件教学过程一、创设问题情境1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作XXXXXXXXXX,B处记作XXXXXXXXXX。以O为原点,取适当的单位长度画数轴,并标出A、B的位置。(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。2、这两只小狗在跑的过程中,有没有共同的地方在数轴上的A、B两点又有什么特征(从形和数两个角度去感受绝对值)。3、在数轴上找到-5和5的点,它们到原点的距离分别是多少表示和的点呢小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。二、建立数学模型1、绝对值的概念(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。注意:①与原点的关系②是个距离的概念2、。练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用+5表示的话,那么下降了5度,就用-5表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变参考资料,少熬夜!化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。](通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)三、应用深化知识1、例题求解例1、求下列各数的绝对值-,0,-10,+102、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)特点:1、一个正数的绝对值是它本身2、一个负数的绝对值是它的相反数3、零的绝对值是零4、互为相反数的两个数的绝对值相等3、出示题目(1)-3的符号是XXXXXXX,绝对值是XXXXXX;(2)+3的符号是XXXXXXX,绝对值是XXXXXX;(3)-的符号是XXXXXXX,绝对值是XXXXXX;(4)+的符号是XXXXXXX,绝对值是XXXXXX;学生口答。师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗5、练习3:回答下列问题①一个数的绝对值是它本身,这个数是什么数②一个数的绝对值是它的相反数,这个数是什么数③一个数的绝对值一定是正数吗④一个数的绝对值不可能是负数,对吗⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗(由学生口答完成,进一步巩固绝对值的概念)6、例2.求绝对值等于4的数(让学生考虑这样的数有几个,是怎样得出这个结果的呢对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)分析:①从数字上分析∵|+4|=4,|-4|=4∴绝对值等于4的数是+4和-4画一个数轴②从几何意义上分析,画一个数轴因为数轴上到原点的距离等于4个单位长度的点有两个,参考资料,少熬夜!即表示+4的点P和表示-4的点M所以绝对值等于4的数是+4和-4.6、练习:做书上12页课内练习1、2两题。四、归纳小结1、本节课我们学习了什么知识2、你觉得本节课有什么收获3、由学生自行总结在自主探究,合作学习中的体会。五、课后作业1、让学生去寻找一些生活中只考虑绝对值的实际例子。2、课本15页的作业题。七年级数学下册教案3平行线的判定(1)课型:新课:备课人:韩贺敏审核人:霍红超学习目标1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力。2.掌握直线平行的条件,领悟归纳和转化的数学思想学习重难点:探索并掌握直线平行的条件是本课的重点也是难点。一、探索直线平行的条件平行线的判定方法1:二、练一练1、判断题1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等。()2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等。()2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________,理由是______________;如果∠2+∠5=______或者_______,那么a∥b,理由是__________.(2)(3)2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°,那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.三、选择题1.如图3所示,下列条件中,不能判定AB∥CD的是()∥EF,CD∥EFB.∠5=∠A;C.∠ABC+∠BCD=180°D.∠2=∠
本文标题:小学六年级数学下册教案精编5篇
链接地址:https://www.777doc.com/doc-12284224 .html