您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 等差数列教案(4篇)
等差数列教案(4篇)编辑特意搜集并分享的“等差数列教案(4篇)”,此文一读相信您会拥有新的认知深度。教案课件是老师不可缺少的课件,所以在写的时候老师们就要花点时间咯。教学质量的提高需要关注学生的反应情况。等差数列教案篇【第一篇】《等比数列前n项和》选自北师大版高中数学必修5第一章第3节的内容。等比数列的前n项和是“等差数列及其前n项和”与“等比数列”内容的延续,也是函数的延续,它实质上是一种特殊的函数;公式推导中蕴涵的数学思想方法如分类讨论等在各种数学问题中有着广泛的应用,如在“分期付款”等实际问题中也经常涉及到.具有一定的探究性。在认知结构上已经掌握等差数列和等比数列的有关知识。在能力方面已经初步具备运用等差数列和等比数列解决问题的能力;但学生从特殊到一般、分类讨论的数学思想还需要进一步培养和提高。在情感态度上学习兴趣比较浓,表现欲较强,但合作交流的意识等方面尚有待加强。并且让学生在探究等比数列前n项和的过程中体会合作交流的重要性。1能够推导出等比数列的前n项和公式;2能够运用等比数列的前n项和公式解决一些简单问题。过程与方法目标:提高学生的建模意识及探究问题、分析与解决问题的能力。体会公式探求过程中从特殊到一般的思维方法、错位相减法和分类讨论思想。情感与态度目标:培养学生勇于探索、敢于创新的精神,磨练思维品质,从中获得成功的体验。《等比数列的前n项和》是这一章的重点,其中公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了多种重要的数学思想,因此,本节课的教学重点为等比数列的前n项和公式的推导及其简单应用.而等比数列的前n项和公式的推导过程中用到的方法学生难以想到,因此本节课的难点为等比数列的前n项和公式的推导。为突出重点和突破难点,我将采用的教学策略为启发式和探究式相结合的教学方法,教学手段采用计算机进行辅助教学。为达到本节课的教学目标,我把教学过程分为如下6个阶段:1、创设情境:创设一个西游记后传的情景,即高老庄集团,由于资金短缺,决定向猴哥进行贷款,猴哥每天给八戒投资1万元,以后每天比前一天多1万,连续30天,但有一个条件:第一天返还1分,第二天返还2分,第三天返还4分后一天返还数为前一天的2倍.假如你是高老庄集团企划部的高参,请你帮八戒决策.这是一个悬念式的实例,后面的“假如”又把学生带入了实例创设的情境,营造了积极、和谐的学习气氛,使学生产生学习心理倾向,并进一步了解数学来源于生活.2、探究问题,讲授新课:根据创设的情景,在教师的诱导下,学生根据自己掌握的知识和经验,很快建立起两个等比数列的数学模型。提出如何求等比数列前n项和的问题,从而引出课题。通过回顾等差数列前n项和公式的推导过程,类比观察等比数列的特点,引导学生思考,如果我们把每一项都乘以2,则每一项就变成了它的后一项,引导学生比较这两个式子有许多相同的项的特点,学生自然就会想到把两式相减,进而突破了用错位相减法推到公式的难点。教师再由特殊到一般、具体到抽象的启示,正式引入本节课的重点等比数列的前n项和,请学生用错位相减法推导出等比数列前n项和公式。得出公式后,学生一起探讨两个问题,一是当q=1时Sn又等于什么,引导学生对q进行分类讨论,得出完整的等比数列前n项和公式,二是结合等比数列的通项公式,引导学生得出公式的另一形式。3、例题讲解:我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。本节课设置如下两种类型的例题:2)等比数列中知三求二的填空题,通过公式的正用和逆用进一步提高学生运用等比数列前n项和的能力.4.形成性练习:练习基本上是直接运用公式求和,三个练习是按由易到难、由简单到复杂的认识规律和心理特征设计的,有利于提高学生的积极性。学生练习时,教师巡查,观察学情,及时从中获取反馈信息。对学生练习中出现的独到解法提出表扬和鼓励,对其中偶发性错误进行辨析、指正。通过形成性练习,培养学生的应变和举一反三的能力,逐步形成技能。(2)推导公式的所用方法——从特殊到一般的思维方法、错位相减法和分类讨论思想。通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。进一步完成认知目标和素质目标。针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,从而达到拔尖和“减负”的目的。并可布置相应的研究作业,思考如何用其他方法来推导等比数列的前n项和公式,来加深学生对这一知识点的理解程度。等差数列教案篇【第二篇】教学目标1。通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;2。利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;3。通过参与编题解题,激发学生学习的兴趣。教学重点,难点教学重点是通项公式的认识;教学难点是对公式的灵活运用.教学用具实物投影仪,多媒体软件,电脑。教学方法研探式。教学过程一。复习提问前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用。二。主体设计通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求)。找学生试举一例如:“已知等差数列中,首项,公差,求。”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上。1。方程思想的运用1已知等差数列中,首项,公差,则-397是该数列的第______项。2已知等差数列中,首项,则公差3已知等差数列中,公差,则首项这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量。2。基本量方法的使用1已知等差数列中,,求的值。2已知等差数列中,,求。若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些等差数列是确定的,由和写出通项公式,便可归结为前一类问题。解决这类问题只需把两个条件(等式)化为关于和的`二元方程组,以求得和,和称作基本量。教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定)。如:已知等差数列中,…由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题3已知等差数列中,求;;;;…。类似的还有4已知等差数列中,求的值。以上属于对数列的项进行定量的研究,有无定性的判断?引出3。研究等差数列的单调性,考察随项数的变化规律。着重考虑的情况。此时是的一次函数,其单调性取决于的符号,由学生叙述结果。这个结果与考察相邻两项的差所得结果是一致的。4。研究项的符号这是为研究等差数列前项和的最值所做的准备工作。可配备的题目如1已知数列的通项公式为,问数列从第几项开始小于0?2等差数列从第________项起以后每项均为负数。三。小结1。用方程思想认识等差数列通项公式;2。用函数思想解决等差数列问题。四。板书设计等差数列通项公式1。方程思想的运用2。基本量方法的使用3。研究等差数列的单调性4。研究项的符号等差数列教案篇【第三篇】第三课时等差数列(一)教学目标:明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的'应用意识.教学重点:1.等差数列的概念的理解与掌握.2.等差数列的通项公式的推导及应用.教学难点:等差数列“等差”特点的理解、把握和应用.教学过程:Ⅰ.复习回顾上两节课我们共同学习了数列的定义及给出数列的两种方法――通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子Ⅱ.讲授新课10,8,6,4,2,…;21,21,22,22,23,23,24,24,252,2,2,2,2,…首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点)它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数.也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列.1.定义等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得:(n-1)个等式若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d即:an=a1+(n-1)d当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N*时上述公式都成立,所以它可作为数列{an}的通项公式.看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项.由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则:an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d.如:a5=a4+d=a3+2d=a2+3d=a1+4d等差数列教案篇【第四篇】请同学们来思考这样一个问题.如果在a与b中间插入一个数A,使a、A、b成等差数列,那么A应满足什么条件?由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=.反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列.总之,A=a,A,b成等差数列.如果a、A、b成等差数列,那么a叫做a与b的等差中项.例题讲解[例1]在等差数列{an}中,已知a5=10,a15=25,求a25.思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25.思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算.思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.[例2](1)求等差数列8,5,2…的第20项.分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项.答案:这个数列的第20项为-49.(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401.∴-401是这个数列的第100项.Ⅲ.课堂练习求等差数列3,7,11,……的'第4项与第10项.2求等差数列10,8,6,……的第20项.3100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.2.在等差数列{an}中,1已知a4=10,a7=19,求a1与d;(2)已知a3=9,a9=3,求a12.Ⅳ.课时小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。Ⅴ.课后作业课本P39习题1,2,3,4
本文标题:等差数列教案(4篇)
链接地址:https://www.777doc.com/doc-12308579 .html