您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初中数学【8年级上】八年级数学人教版上册【能力培优】12.3 角的平分线的性质(含答案)
12.3角的平分线的性质专题一利用角的平分线的性质解题1.如图,在△ABC中,AC=AB,D在BC上,若DF⊥AB,垂足为F,DG⊥AC,垂足为G,且DF=DG.求证:AD⊥BC.2.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.3.如图,在Rt△ABC中,∠C=90°,21BACB∶∶∠∠,AD是∠BAC的角平分线,DE⊥AB于点E,AC=3cm,求BE的长.专题二角平分线的性质在实际生活中的应用4.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处5.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在__________,理由是__________.6.已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留作图痕迹)状元笔记【知识要点】1.角的平分线的性质角的平分线上的点到角的两边的距离相等.2.角的平分线的判定角的内部到角的两边的距离相等的点在角的平分线上.【温馨提示】1.到三角形三边距离相等的点是三角形三条角平分线的交点,不是其他线段的交点.2.到三角形三边距离相等的点不仅有内角的平分线的交点,还有相邻两外角的平分线的交点,这样的点共有4个.【方法技巧】1.利用角的平分线的性质解决问题的关键是:挖掘角的平分线上的一点到角两边的垂线段.若已知条件存在两条垂线段——直接考虑垂线段相等,若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,[来源:若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段.2.利用角平分线的判定解决问题的策略是:挖掘已知图形中一点到角两边的垂线段.若已知条件存在两条垂线段——先证明两条垂线段相等,然后说明角平分线或角的关系;若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,再证明两条垂线段相等;若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段后,证明两条垂线段相等.参考答案:1.证明:∵DFABDGACDFDG,,,∴AD是BAC∠的平分线,∴BADCAD∠∠.在ABD△和ACD△中,(公共边)(已求)已知)ADADDACDABACAB(∴SAS)ABDACD(△≌△.∴ADBADC∠∠.又∵180BDACDA∠∠,∴90BDA∠,∴ADBC.2.证明:∵AO平分∠BAC,OD⊥AB,OE⊥AC,∴OD=OE,在Rt△BDO和Rt△CEO中,,,COEDOBOEODCEOBDO∴(ASA)BDOCEO△≌△.∴OB=OC.3.解:∵∠C=90°,∴∠BAC+∠B=90°,又DE⊥AB,∴∠C=∠AED=90°,又21BACB∶∶∠∠,∴∠A=60°,∠B=30°,又∵AD平分∠BAC,DC⊥AC,DE⊥AB,∴DC=DE,∴3AEACcm.在Rt△DAE和Rt△DBE中,.DEDEBEDAEDBDAE∴△DAE≌△DBE(AAS),∴3BEAEcm.4.C解析:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选C.5.∠A的角平分线上,且距A1cm处角平分线上的点到角两边的距离相等6.解:作两个角的平分线,交点P就是所求作的点.
本文标题:初中数学【8年级上】八年级数学人教版上册【能力培优】12.3 角的平分线的性质(含答案)
链接地址:https://www.777doc.com/doc-12407317 .html