您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初中数学【8年级上】15.2.3 整数指数幂
15.2分式的运算15.2.3整数指数幂1.知道负整数指数幂a-n=1an.(a≠0,n是正整数)2.掌握整数指数幂的运算性质.3.会用科学记数法表示绝对值小于1的数.重点掌握整数指数幂的运算性质,会有科学记数法表示绝对值小于1的数.难点负整数指数幂的性质的理解和应用.一、复习引入1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:am·an=am+n(m,n是正整数);(2)幂的乘方:(am)n=amn(m,n是正整数);(3)积的乘方:(ab)n=anbn(n是正整数);(4)同底数的幂的除法:am÷an=am-n(a≠0,m,n是正整数,m>n);(5)分式的乘方:(ab)n=anbn(n是正整数).2.回忆0指数幂的规定,即当a≠0时,a0=1.二、探究新知(一)1.计算当a≠0时,a3÷a5=a3a5=a3a3·a2=1a2,再假设正整数指数幂的运算性质am÷an=am-n(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5=a3-5=a-2.于是得到a-2=1a2(a≠0).总结:负整数指数幂的运算性质:一般的,我们规定:当n是正整数时,a-n=1an(a≠0).2.练习巩固:填空:(1)-22=________,(2)(-2)2=________,(3)(-2)0=________,(4)20=________,(5)2-3=________,(5)(-2)-3=________.3.例1(教材例9)计算:(1)a-2÷a5;(2)(b3a2)-2;(3)(a-1b2)3;(4)a-2b2·(a2b-2)-3.解:(1)a-2÷a5=a-2-5=a-7=1a7;(2)(b3a2)-2=b-6a-4=a4b-6=a4b6;(3)(a-1b2)3=a-3b6=b6a3;(4)a-2b2·(a2b-2)-3=a-2b2·a-6b6=a-8b8=b8a8.[分析]本例题是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.4.练习:计算:(1)(x3y-2)2;(2)x2y-2·(x-2y)3;(3)(3x2y-2)2÷(x-2y)3.5.例2判断下列等式是否正确?(1)am÷an=am·a-n;(2)(ab)n=anb-n.[分析]类比负数的引入使减法转化为加法,得到负指数幂的引入可以使除法转化为幂的乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断等式是否正确.(二)1.用科学记数法表示值较小的数因为0.1=110=10-1;0.01=________=________;0.001=________=________……所以0.000025=2.5×0.00001=2.5×10-5.我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a×10-n的形式,其中n是正整数,1≤|a|<10.2.例3(教材例10)纳米是非常小的长度单位,1纳米=10-9米,把1纳米的物体放到乒乓球上,就如同把乒乓球放到地球上.1立方毫米的空间可以放多少个1立方纳米的物体?(物体之间的间隙忽略不计)[分析]这是一个介绍纳米的应用题,是应用科学记数法表示小于1的数.3.用科学记数法表示下列各数:0.0004,-0.034,0.00000045,0.003009.4.计算:(1)(3×10-8)×(4×103);(2)(2×10-3)2÷(10-3)3.三、课堂小结1.引进了零指数幂和负整数幂,指数的范围扩大到了全体整数,幂的性质仍然成立.2.科学记数法不仅可以表示一个值大于10的数,也可以表示一些绝对值较小的数,在应用中,要注意a必须满足1≤|a|<10,其中n是正整数.四、布置作业教材第147页习题15.2第7,8,9题.本节课教学的主要内容是整数指数幂,将以前所学的有关知识进行了扩充.在本节的教学设计上,教师重点挖掘学生的潜在能力,让学生在课堂上通过观察、验证、探究等活动,加深对新知识的理解.
本文标题:初中数学【8年级上】15.2.3 整数指数幂
链接地址:https://www.777doc.com/doc-12409127 .html