您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 高中数学排列组合题型总结
排列组合题型总结排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。一.直接法1.特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。分析:(1)个位和千位有5个数字可供选择25A,其余2位有四个可供选择24A,由乘法原理:25A24A=2402.特殊位置法(2)当1在千位时余下三位有35A=60,1不在千位时,千位有14A种选法,个位有14A种,余下的有24A,共有14A14A24A=192所以总共有192+60=252二.间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法2435462AAA=252例2有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书?分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数333352AC个,其中0在百位的有2242C22A个,这是不合题意的。故共可组成不同的三位数333352AC-2242C22A=432(个)三.插空法当需排元素中有不能相邻的元素时,宜用插空法。例3在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019AA=100中插入方法。四.捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。例44名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A种排法,而男生之间又有44A种排法,又乘法原理满足条件的排法有:44A×44A=576练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有种(3324AC)2.某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129AC)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C其余的就是19所学校选28天进行排列)五.阁板法名额分配或相同物品的分配问题,适宜采阁板用法例5某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种。分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有711C种练习1.(a+b+c+d)15有多少项?当项中只有一个字母时,有14C种(即a.b.c.d而指数只有15故01414CC。当项中有2个字母时,有24C而指数和为15,即将15分配给2个字母时,如何分,闸板法一分为2,114C即24C114C当项中有3个字母时34C指数15分给3个字母分三组即可21434CC当项种4个字母都在时31444CC四者都相加即可.练习2.有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法?(216C)3.不定方程X1+X2+X3+…+X50=100中不同的整数解有(4999C)六.平均分堆问题例66本不同的书平均分成三堆,有多少种不同的方法?分析:分出三堆书(a1,a2),(a3,a4),(a5,a6)由顺序不同可以有33A=6种,而这6种分法只算一种分堆方式,故6本不同的书平均分成三堆方式有33222426ACCC=15种练习:1.6本书分三份,2份1本,1份4本,则有不同分法?3,52,42.某年级6个班的数学课,分配给甲乙丙三名数学教师任教,每人教两个班,则分派方法的种数。七.合并单元格解决染色问题例7(全国卷(文、理))如图1,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有四种颜色可供选择,则不同的着色方法共有种(以数字作答)。分析:颜色相同的区域可能是2、3、4、5.下面分情况讨论:(ⅰ)当2、4颜色相同且3、5颜色不同时,将2、4合并成一个单元格,此时不同的着色方法相当于4个元素①③⑤的全排列数A44(ⅱ)当2、4颜色不同且3、5颜色相同时,与情形(ⅰ)类似同理可得A44种着色法.(ⅲ)当2、4与3、5分别同色时,将2、4;3、5分别合并,这样仅有三个单元格①从4种颜色中选3种来着色这三个单元格,计有AC3334种方法.由加法原理知:不同着色方法共有2ACA333444=48+24=72(种)练习1(天津卷(文))将3种作物种植在如图的5块试验田里,每快种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共种(以数字作答)(72)2.(江苏、辽宁、天津卷(理))某城市中心广场建造一个花圃,花圃6分为个部分(如图3),现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种同一样颜色的话,不同的栽种方法有种(以数字作答).(120)图3图43.如图4,用不同的5种颜色分别为ABCDE五部分着色,相邻部分不能用同一颜色,但同一种颜色可以反复使用也可以不用,则符合这种要求的不同着色种数.(540)4.如图5:四个区域坐定4个单位的人,有四种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两区域的颜色不同,不相邻区域颜色相同,不相邻区域颜色相同与否不受限制,那么不同的着色方法是种(84)图5图65.将一四棱锥(图6)的每个顶点染一种颜色,并使同一条棱的两端点异色,若只有五种颜色可供使用,123452,4546132EDCBA4321DBCEA则不同的染色方法共种(420)八.递推法例八一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法?分析:设上n级楼梯的走法为an种,易知a1=1,a2=2,当n≥2时,上n级楼梯的走法可分两类:第一类:是最后一步跨一级,有an-1种走法,第二类是最后一步跨两级,有an-2种走法,由加法原理知:an=an-1+an-2,据此,a3=a1+a2=3,a4=a#+a2=5,a5=a4+a3=8,a6=13,a7=21,a8=34,a9=55,a10=89.故走上10级楼梯共有89种不同的方法。九.几何问题1.四面体的一个顶点位A,从其它顶点与各棱中点取3个点,使它们和点A在同一平面上,不同的取法有种(335C+3=33)2.四面体的棱中点和顶点共10个点(1)从中任取3个点确定一个平面,共能确定多少个平面?(310C-436C+4-334C+3-6C34+6+2×6=29)(2)以这10个点为顶点,共能确定多少格凸棱锥?三棱锥C104-4C64-6C44-3C44=141四棱锥6×4×4=963×6=18共有114十.先选后排法例9有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选派4人承担这三项任务,不同的选派方法有()A.1260种B.2025种C.2520种D.5054种分析:先从10人中选出2人十一.用转换法解排列组合问题例10.某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种.解把问题转化为四个相同的黑球与四个相同白球,其中只有三个黑球相邻的排列问题.25A=20种例11.个人参加秋游带10瓶饮料,每人至少带1瓶,一共有多少钟不同的带法.解把问题转化为5个相同的白球不相邻地插入已经排好的10个相同的黑球之间的9个空隙种的排列问题.59C=126种例12从1,2,3,…,1000个自然数中任取10个不连续的自然数,有多少种不同的去法.解把稳体转化为10个相同的黑球与990个相同白球,其其中黑球不相邻的排列问题。10991C例13某城市街道呈棋盘形,南北向大街5条,东西向大街4条,一人欲从西南角走到东北角,路程最短的走法有多少种.解无论怎样走必须经过三横四纵,因此,把问题转化为3个相同的白球与四个相同的黑球的排列问题.37C=35(种)例14一个楼梯共18个台阶12步登完,可一步登一个台阶也可一步登两个台阶,一共有多少种不同的走法.解根据题意要想12步登完只能6个一步登一个台阶,6个一步登两个台阶,因此,把问题转化为6个相同的黑球与6个相同的白球的排列问题.612C=924(种).例15求(a+b+c)10的展开式的项数.解展开使的项为aαbβcγ,且α+β+γ=10,因此,把问题转化为2个相同的黑球与10个相同的白球的排列问题.212C=66(种)例16亚、欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有多少种?解设亚洲队队员为a1,a2,…,a5,欧洲队队员为b1,b2,…,b5,下标表示事先排列的出场顺序,若以依次被淘汰的队员为顺序.比赛过程转化为这10个字母互相穿插的一个排列,最后师胜队种步被淘汰的队员和可能未参加参赛的队员,所以比赛过程可表示为5个相同的白球和5个相同黑球排列问题,比赛过程的总数为610C=252(种)十二.转化命题法例17圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少各?分析:因两弦在圆内若有一交点,则该交点对应于一个以两弦的四端点为顶点的圆内接四边形,则问题化为圆周上的15个不同的点能构成多少个圆内接四边形,因此这些现在圆内的交点最多有415C=1365(个)十三.概率法例18一天的课程表要排入语文、数学、物理、化学、英语、体育六节课,如果数学必须排在体育之前,那么该天的课程表有多少种排法?分析:在六节课的排列总数中,体育课排在数学之前与数学课排在体育之前的概率相等,均为21,故本例所求的排法种数就是所有排法的21,即21A=360种十四.除序法例19用1,2,3,4,5,6,7这七个数字组成没有重复数字的七位数中,(1)若偶数2,4,6次序一定,有多少个?(2)若偶数2,4,6次序一定,奇数1,3,5,7的次序也一定的有多少个?解(1)3377AA(2)443377AAA十五.错位排列例20同室四人各写一张贺卡,先集中起来,然后每人从中拿一张别人送出的卡片,则不同的分配方法有种(9)公式1)))(1(21nnnaanan=4时a4=3(a3+a2)=9种即三个人有两种错排,两个人有一种错排.2)na=n!(1-!11+!21-!31+…+n1!1n练习有五位客人参加宴会,他们把帽子放在衣帽寄放室内,宴会结束后每人戴了一顶帽子回家,回家后,他们的妻子都发现他们戴了别人的帽子,问5位客人都不戴自己帽子的戴法有多少种?(44)
本文标题:高中数学排列组合题型总结
链接地址:https://www.777doc.com/doc-1242735 .html