您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初中数学【9年级下】九年级下学期开学考试数学试卷【解析版】
九年级下学期开学考试数学试卷一、选择题(本大题共6题,每题4分,满分24分)1.抛物线y=﹣(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3)C.(2,﹣3)D.(﹣2,﹣3)2.已知点D、E分别在△ABC的边AB、AC上,下列给出的条件中,不能判定DE∥BC的是()A.BD:AB=CE:ACB.DE:BC=AB:ADC.AB:AC=AD:AED.AD:DB=AE:EC3.在4×4网格中,∠α的位置如图所示,则tanα的值为()A.B.C.2D.4.在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA=B.tanA=C.sinA=D.cosA=5.在下列y关于x的函数中,一定是二次函数的是()A.y=x2B.y=C.y=kx2D.y=k2x6.如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A.4.5米B.6米C.7.2米D.8米二、填空题(本大题共12题,每题4分,满分48分)7.已知=,则的值是.8.点P是线段AB的黄金分割点(AP>BP),则=.9.如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD=9,则S△EFC=.10.如果α是锐角,且tanα=cot20°,那么α=度.11.计算:2sin60°+tan45°=.12.如果一段斜坡的坡角是30°,那么这段斜坡的坡度是.(请写成1:m的形式)13.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.14.将抛物线y=﹣(x﹣3)2+5向下平移6个单位,所得到的抛物线的顶点坐标为.15.已知抛物线经过A(0,﹣3)、B(2,﹣3)、C(4,5),判断点D(﹣2,5)是否在该抛物线上.你的结论是:(填“是”或“否”).16.如图,正方形DEFG内接于Rt△ABC,∠C=90°,AE=4,BF=9,则tanA=.17.如图,梯形ABCD中,AD∥BC,AB=DC,点P是AD边上一点,联结PB、PC,且AB2=AP•PD,则图中有对相似三角形.18.如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处.如果=m,=n.那么m与n满足的关系式是:m=(用含n的代数式表示m).三、解答题(本大题共7题,满分78分)19.解方程:﹣=2.20.已知二次函数y=﹣2x2+bx+c的图象经过点A(0,4)和B(1,﹣2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y=a(x+m)2+k的形式;(2)写出该抛物线顶点C的坐标,并求出△CAO的面积.21.已知抛物线y=﹣x2+bx+c的对称轴是直线x=﹣1,且经过点(2,﹣3),求这个二次函数的表达式.22.如图7,某人在C处看到远处有一凉亭B,在凉亭B正东方向有一棵大树A,这时此人在C处测得B在北偏西45°方向上,测得A在北偏东35°方向上.又测得A、C之间的距离为100米,求A、B之间的距离.(精确到1米).(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)23.如图,已知等腰梯形ABCD中,AD∥BC,AD=1,BC=3,AB=CD=2,点E在BC边上,AE与BD交于点F,∠BAE=∠DBC.(1)求证:△ABE∽△BCD;(2)求tan∠DBC的值;(3)求线段BF的长.24.如图,在平面直角坐标系内,已知直线y=x+4与x轴、y轴分别相交于点A和点C,抛物线y=x2+kx+k﹣1图象过点A和点C,抛物线与x轴的另一交点是B,(1)求出此抛物线的解析式、对称轴以及B点坐标;(2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D的坐标.25.如图,已知在等腰Rt△ABC中,∠C=90°,斜边AB=2,若将△ABC翻折,折痕EF分别交边AC、边BC于点E和点F(点E不与A点重合,点F不与B点重合),且点C落在AB边上,记作点D.过点D作DK⊥AB,交射线AC于点K,设AD=x,y=cot∠CFE,(1)求证:△DEK∽△DFB;(2)求y关于x的函数解析式并写出定义域;(3)联结CD,当=时,求x的值.九年级下学期开学考试数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.抛物线y=﹣(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3)C.(2,﹣3)D.(﹣2,﹣3)【考点】二次函数的性质.【分析】直接根据二次函数的顶点式进行解答即可.【解答】解:∵抛物线的解析式为:y=﹣(x﹣2)2+3,∴其顶点坐标为(2,3).故选B.【点评】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.2.已知点D、E分别在△ABC的边AB、AC上,下列给出的条件中,不能判定DE∥BC的是()A.BD:AB=CE:ACB.DE:BC=AB:ADC.AB:AC=AD:AED.AD:DB=AE:EC【考点】平行线分线段成比例.【分析】根据已知选项只要能推出=或=,再根据相似三角形的判定推出△ADE∽△ABC,推出∠ADE=∠B,根据平行线的判定推出DE∥BC,即可得出选项.【解答】解:A、∵BD:AB=CE:AC,∴=,∴=,∴1﹣=1﹣,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,正确,故本选项错误;B、∵根据DE:BC=AB:AD不能推出△ADE∽△ABC,∴不能推出∠ADE=∠B,∴不能推出DE∥BC,错误,故本选项正确;C、∵AB:AC=AD:AE,∴=,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,正确,故本选项错误;D、∵AD:DB=AE:EC,∴=,∴=,∴=,∴﹣1=﹣1,∴=,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,正确,故本选项错误;故选B.【点评】本题考查了平行线分线段成比例定理和相似三角形的性质和判定,平行线的判定的应用,解此题的关键是能推出△ADE≌△ABC,题目比较好,难度适中.3.在4×4网格中,∠α的位置如图所示,则tanα的值为()A.B.C.2D.【考点】锐角三角函数的定义.【专题】网格型.【分析】根据“角的正切值=对边÷邻边”求解即可.【解答】解:由图可得,tanα=2÷1=2.故选C.【点评】本题考查了锐角三角函数的定义,正确理解正切值的含义是解决此题的关键.4.在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA=B.tanA=C.sinA=D.cosA=【考点】锐角三角函数的定义.【分析】根据三角函数定义:(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.分别进行分析即可.【解答】解:在直角△ABC中,∠C=90°,则A、cosA=,故本选项错误;B、tanA=,故本选项错误;C、sinA=,故本选项正确;D、cosA=,故本选项错误;故选:C.【点评】此题主要考查了锐角三角函数的定义,关键是熟练掌握锐角三角函数的定义.5.在下列y关于x的函数中,一定是二次函数的是()A.y=x2B.y=C.y=kx2D.y=k2x【考点】二次函数的定义.【分析】根据二次函数的定义形如y=ax2+bx+c(a≠0)是二次函数.【解答】解:A、是二次函数,故A符合题意;B、是分式方程,故B错误;C、k=0时,不是函数,故C错误;D、k=0是常数函数,故D错误;故选:A.【点评】本题考查二次函数的定义,形如y=ax2+bx+c(a≠0)是二次函数.6.如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A.4.5米B.6米C.7.2米D.8米【考点】相似三角形的应用;中心投影.【专题】计算题.【分析】由MC∥AB可判断△DCM∽△DAB,根据相似三角形的性质得=,同理可得=,然后解关于AB和BC的方程组即可得到AB的长.【解答】解:∵MC∥AB,∴△DCM∽△DAB,∴=,即=①,∵NE∥AB,∴△FNE∽△FAB,∴=,即=②,∴=,解得BC=3,∴=,解得AB=6,即路灯A的高度AB为6m.故选B.【点评】本题考查了相似三角形的应用:利用影长测量物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.二、填空题(本大题共12题,每题4分,满分48分)7.已知=,则的值是.【考点】比例的性质.【分析】根据分比性质,可得答案.【解答】解:由分比性质,得==,故答案为:.【点评】本题考查了比例的性质,利用了分比性质:=⇒=.8.点P是线段AB的黄金分割点(AP>BP),则=.【考点】黄金分割.【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值叫做黄金比.【解答】解:∵点P是线段AB的黄金分割点(AP>BP),∴==.故答案为.【点评】本题考查了黄金分割的定义,牢记黄金分割比是解题的关键.9.如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD=9,则S△EFC=4.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】推理填空题.【分析】由于四边形ABCD是平行四边形,所以得到BC∥AD、BC=AD,而CE:BC=2:3,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解.【解答】解:∵四边形ABCD是平行四边形,∴BC∥AD、BC=AD,而CE:BC=2:3,∴△AFD∽△CFE,且它们的相似比为3:2,∴S△AFD:S△EFC=()2,而S△AFD=9,∴S△EFC=4.故答案为:4.【点评】此题主要考查了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解.10.如果α是锐角,且tanα=cot20°,那么α=70度.【考点】互余两角三角函数的关系.【分析】根据一个角的正切值等于它的余角的余切值即可求解.【解答】解:∵tanα=cot20°,∴∠α+20°=90°,即∠α=90°﹣20°=70°.故答案为70.【点评】本题考查了互为余角的锐角三角函数关系:一个角的正切值等于它的余角的余切值.11.计算:2sin60°+tan45°=+1.【考点】特殊角的三角函数值.【分析】根据特殊三角函数值,可得答案.【解答】解:原式=2×+1=+1,故答案为:+1.【点评】本题考查了特殊角的三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.12.如果一段斜坡的坡角是30°,那么这段斜坡的坡度是1:.(请写成1:m的形式)【考点】解直角三角形的应用-坡度坡角问题.【分析】坡比等于坡角的正切值,据此即可求解.【解答】解:i=tanα=tan30°==1:,故答案是:1:.【点评】本题主要考查了坡比与坡角的关系,注意坡比一般表示成1:a的形式.13.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是m>1.【考点】二次函数的性质.【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数m﹣1>0.【解答】解:因为抛物线y=(m﹣1)x2的开口向上,所以m﹣1>0,即m>1,故m的取值范围是m>1.【点评】解答此题要掌握二次函数图象的特点.14.将抛物线y=﹣(x﹣3)2+5向下平移6个单位,所得到的抛物线的顶点坐标为(3,﹣1).【考点】二次函数
本文标题:初中数学【9年级下】九年级下学期开学考试数学试卷【解析版】
链接地址:https://www.777doc.com/doc-12435392 .html