您好,欢迎访问三七文档
初二数学教案5篇经过我们辛苦的修改和持续地改进,这篇“初二数学教案5篇”已经达到了完美的境地。教师们会根据精心准备的教案和课件来给学生上课,每一位老师都需要仔细地筹备教案和设计课件。教案和课件的设计质量与教学效果密切相关。欢迎您品味这独一无二的文章!初二数学教案1教学目标1、知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式、2、过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解、3、情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值、重、难点与关键1、重点:掌握用提公因式法把多项式分解因式、2、难点:正确地确定多项式的公因式、3、关键:提公因式法关键是如何找公因式、方法是:一看系数、二看字母、公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂、教学方法采用“启发式”教学方法、教学过程一、回顾交流,导入新知【复习交流】下列从左到右的变形是否是因式分解,为什么?(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;(5)x2-2xy+y2=(x-y)2、问题:1、多项式mn+mb中各项含有相同因式吗?2、多项式4x2-x和xy2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由、【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y、概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法、二、小组合作,探究方法【教师提问】多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂、三、范例学习,应用所学【例1】把-4x2yz-12xy2z+4xyz分解因式、解:-4x2yz-12xy2z+4xyz=-(4x2yz+12xy2z-4xyz)=-4xyz(x+3y-1)【例2】分解因式,3a2(x-y)3-4b2(y-x)2【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法、解法1:3a2(x-y)3-4b2(y-x)2=-3a2(y-x)3-4b2(y-x)2=-[(y-x)2?3a2(y-x)+4b2(y-x)2]=-(y-x)2[3a2(y-x)+4b2]=-(y-x)2(3a2y-3a2x+4b2)解法2:3a2(x-y)3-4b2(y-x)2=(x-y)2?3a2(x-y)-4b2(x-y)2=(x-y)2[3a2(x-y)-4b2]=(x-y)2(3a2x-3a2y-4b2)【例3】用简便的方法计算:0、84×12+12×0、6-0、44×12、【教师活动】引导学生观察并分析怎样计算更为简便、解:0、84×12+12×0、6-0、44×12=12×(0、84+0、6-0、44)=12×1=12、【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题、【探研时空】利用提公因式法计算:0、582×8、69+1、236×8、69+2、478×8、69+5、704×8、69五、课堂总结,发展潜能1、利用提公因式法因式分解,关键是找准公因式、在找公因式时应注意:(1)系数要找公约数;(2)字母要找各项都有的;(3)指数要找最低次幂、2、因式分解应注意分解彻底,也就是说,分解到不能再分解为止、六、布置作业,专题突破课本P170习题15、4第1、4(1)、6题、板书设计初二数学教案2教学设计思想:本节主要学习了平行四边形的几种判定方法,以及平行四边形性质、判定的应用——三角形的中位线定理。通过问题情境引入平行四边形判定的研究,首先通过直观猜测判定的方法,再次通过几何证明来证明它的正确性。充分发挥学生的主观能动性。教学目标知识与技能:1.总结出平行四边形的三种判定方法;2.应用平行四边形的判定解决实际问题;3.应用平行四边形的性质与判定得出三角形中位线定理;4.总结三角形与平行四边形的相互转化,学会基本的添辅助线法。过程与方法:1.经历平行四边形判别条件的探索过程,逐步掌握说理的基本方法。2.经历探究三角形中位线定理的过程,体会转化思想在数学中的重要性。情感态度价值观:1.在探究活动中,发展合情推理意识,养成主动探究的习惯;2.通过探索式证明法开拓思路,发展思维能力;3.在解决平行四边形问题的过程中,不断渗透转化思想。教学重难点重点:1.平行四边形的判别条件;2.应用平行四边形的性质和判定得出三角形中位线定理。难点:1.灵活应用平行四边形的判别条件;2.合理添加辅助线;3.三角形与平行四边形之间的合理转化。教学方法小组讨论、合作探究课时安排3课时教学媒体课件、教学过程第一课时(一)引入师:上节课我们已经知道了平行四边形的边、角及对角线所具有的性质,请同学们回忆一下都有哪些?初二数学教案3一、教学目的1.使学生理解自变量的取值范围和函数值的意义。2.使学生理解求自变量的取值范围的两个依据。3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。4.通过求函数中自变量的取值范围使学生进一步理解函数概念。二、教学重点、难点重点:函数自变量取值的求法。难点:函灵敏处变量取值的确定。三、教学过程复习提问1.函数的定义是什么?函数概念包含哪三个方面的内容?2.什么叫分式?当x取什么数时,分式x+2/2x+3有意义?(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)3.什么叫二次根式?使二次根式成立的条件是什么?(答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数≥0。)4.举出一个函数的实例,并指出式中的变量与常量、自变量与函数。新课1.结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。并指出,函数表示法除了解析法外,还有图象法和列表法。2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是:1自变量取值范围是使函数解析式(即是函数表达式)有意义。2自变量取值范围要使实际问题有意义。3.讲解P93中例3。结合例3引出函数值的意义。并指出两点:1例3中的4个小题归纳起来仍是三类题型。2求函数值的问题实际是求代数式值的问题。小结1.解析法的意义:用数学式子表示函数的方法叫解析法。2.求函数自变量取值范围的两个方法(依据):1要使函数的解析式有意义。①函数的解析式是整式时,自变量可取全体实数;②函数的解析式是分式时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0。2对于反映实际问题的函数关系,应使实际问题有意义。3.求函数值的方法:把所给出的自变量的值代入函数解析式中,即可求出相庆原函数值。练习:P94中1,2,3。作业:P95~P96中A组3,4,5,6,7。B组1,2。四、教学注意问题1.注意渗透与训练学生的归纳思维。比如例2、例3中各是4个小题,对每一个例题均可归纳为三类题型。而对于例2、例3这两道例题,虽然要求各异,但题目结构仍是三类题型:整式、分式、二次根式。2.注意训练与培养学生的优质联想能力。要求学生仿照例题自编题目是有效手段。3.注意培养学生对于“具体问题要具体分析”的良好学习方法。比如对于有实际意义来确定,由于实际问题千差万别,所以我们就要具体分析,灵活处置。初二数学教案41.使学生能利用公式解决简单的实际问题.2.使学生理解公式与代数式的关系.1.利用数学公式解决实际问题的能力.2.利用已知的公式推导新公式的能力.数学来源于生产实践,又反过来服务于生产实践.数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.【教法说明】让学生感知用割补法求图形的面积。例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积S。师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)学生口述解题过程,教师予以指正并指出,强调解题的规范性.【教法说明】1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.评讲时注意1.如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算.2.本题实际上是由圆的面积公式推导出环形面积公式.教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.2.已知长方形的长是宽的倍,如果用a表示宽,那么这个长方形的周长是多少?当时,求t4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。(1)求A地到B地所用的时间公式。(2)若千米/时,千米/时,求从A地到B地所用的时间。学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展.师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式.1.圆的半径为R,它的面积________,周长_____________2.平行四边形的底边长是,高是,它的面积_____________;如果,,那么_________3.圆锥的底面半径为,高是,那么它的体积__________如果,,那么_________(二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积V,如果,,,V是多少?必做题1.2.3.根据给出的数据推导公式。初二数学教案5新课指南1.知识与技能:(1)在具体情境中了解代数式及代数式的值的含义;(2)掌握整式、同类项及合并同类项法则和去括号法则;(3)培养学生用字母表示数和探索数学规律的能力.2.过程与方法:经历探索规律并用代数式表示规律的过程,学会列简单的代数式.在具体情境中体会同类项的意义及合并同类项、去括号法则的必要性,总结合并同类项及去括号的法则,并利用它们进行整式的加减运算和解决简单的实际问题.3.情感态度与价值观:通过对整式加减的学习,深入体会代数式在实际生
本文标题:初二数学教案5篇
链接地址:https://www.777doc.com/doc-12548824 .html