您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 人事档案/员工关系 > 第19讲-图形的分割与拼接
第19讲图形的分割与拼接怎样把一个图形按照要求分割成若干部分?怎样把一个图形分割成若干部分后,再按要求拼接成另一个图形?这就是本讲要解决的问题。例1请将一个任意三角形分成四个面积相等的三角形。分析与解:本题要求分成面积相等的三角形,因此可以利用“同底等高的三角形面积相等”这一性质来分割。方法一:将某一边等分成四份,连结各分点与顶点(见左下图)。方法二:画出某一边的中线,然后将中线二等分,连结分点与另两个顶点(见右上图)。方法三:找出三条边上的中点,然后如左下图所示连结。方法四:将三条边上的中点两两连结(见右上图)。前三种方法可以看成先将三角形分割成面积相等的两部分,然后分别将每部分再分割成面积相等的两部分。本题还有更多的分割方法。例2将右图分割成五个大小相等的图形。分析与解:因为图中共有15个小正方形,所以分割成的图形的面积应该等于15÷5=3(个)小正方形的面积。3个小正方形有和两种形式,于是可得到很多种分割方法,下图是其中的三种。例3右图是一个4×4的方格纸,请在保持每个小方格完整的情况下,将它分割成大小、形状完全相同的两部分。分析与解:因为分割成完全相同的两块,所以每块有8个小方格,并且这两块关于中心点对称。下面是六种分割方法。例4将下图分割成两块,然后拼成一个正方形。分析与解:图形的面积等于16个小方格,如果以每个小方格的边长为1,那么拼成的正方形的边长应是4。因为题图是缺角长方形,长为6宽为3,所以分割成两块后,右边的一块应向上平移1(原来宽为3,向上平移1使宽为4),向左平移2(原来长为6,向左平移2使长为4)。考虑到缺角这一特点,可做下图所示的分割和拼接。例5有一块长4.8米、宽3米的长方形地毯,现在把它铺到长4米、宽3.6米的房间中。请将它剪成形状相同、面积相等的两块,使其正好铺满房间。分析与解:首先验证地毯的面积与房间的面积是否相等,然后考虑如何以可将原来的长分为4份,宽分为3份(见下页左上图),现在的长与宽如下页右上图。容易得到下图所示的分割与拼接的方法。例6用四块相同的不等腰的直角三角板,拼成一个外面是正方形,里面有正方形孔的图形。分析与解:右图所示的三角板,∠A是直角,∠B+∠C=90°。因为要拼的图形有内外两个正方形,所以有将∠A作为外正方形的角(左下图)和拼内正方形的角(下中图)两种情况。若三角板可以重叠放置,还有右下图所示的拼法。练习191.试将一个等边三角形分割成8个全等的直角三角形。2.用四种方法将左下图分割成完全相同的两部分,但要保持每个小方格的完整。3.将右上图分成四个大小相等、形状相同的图形。4.将下图分成两块,然后拼成一个正方形。5.将一块30×20的方格纸分成大小、形状都相同的两块,然后拼成一个24×25的长方形。6.将一个正方形分成相等的4块,然后用这4块分别拼成三角形、平行四边形和梯形。第23讲列方程解应用题有些数量关系比较复杂的应用题,用算术方法求解比较困难。此时,如果能恰当地假设一个未知量为x(或其它字母),并能用两种方式表示同一个量,其中至少有一种方式含有未知数x,那么就得到一个含有未知数x的等式,即方程。利用列方程求解应用题,数量关系清晰、解法简洁,应当熟练掌握。例1商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元。问:胶鞋有多少双?分析:此题几个数量之间的关系不容易看出来,用方程法却能清楚地把它们的关系表达出来。设胶鞋有x双,则布鞋有(46-x)双。胶鞋销售收入为7.5x元,布鞋销售收入为5.9(46-x)元,根据胶鞋比布鞋多收入10元可列出方程。解:设有胶鞋x双,则有布鞋(46-x)双。7.5x-5.9(46-x)=10,7.5x-271.4+5.9x=10,13.4x=281.4,x=21。答:胶鞋有21双。分析:因为题目条件中黄球、蓝球个数都是与红球个数进行比较,所以答:袋中共有74个球。在例1中,求胶鞋有多少双,我们设胶鞋有x双;在例2中,求袋中共有多少个球,我们设红球有x个,求出红球个数后,再求共有多少个球。像例1那样,直接设题目所求的未知数为x,即求什么设什么,这种方法叫直接设元法;像例2那样,为解题方便,不直接设题目所求的未知数,而间接设题目中另外一个未知数为x,这种方法叫间接设元法。具体采用哪种方法,要看哪种方法简便。在小学阶段,大多数题目可以使用直接设元法。例3某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?分析与解一:用直接设元法。设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程80x-40=(30x+40)×2,80x-40=60x+80,20x=120,x=6(座)。分析与解二:用间接设元法。设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。(x-40)×80=(2x+40)×30,80x-3200=60x+1200,20x=4400,x=220(米3)。由灰砖有220米3,推知修建住宅(220-40)÷30=6(座)。同理,也可设有红砖x米3。留给同学们做练习。例4教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍。问:最初有多少个女生?分析与解:设最初有x个女生,则男生最初有(x-10)×2个。根据走了10个女生、9个男生后,女生是男生人数的5倍,可列方程x-10=[(x-10)×2-9]×5,x-10=(2x-29)×5,x-10=10x-145,9x=135,x=15(个)。例5一群学生进行篮球投篮测验,每人投10次,按每人进球数统计的部分情况如下表:还知道至少投进3个球的人平均投进6个球,投进不到8个球的人平均投进3个球。问:共有多少人参加测验?分析与解:设有x人参加测验。由上表看出,至少投进3个球的有(x-7-5-4)人,投进不到8个球的有(x-3-4-1)人。投中的总球数,既等于进球数不到3个的人的进球数加上至少投进3个球的人的进球数,0×7+1×5+2×4+6×(x-7-5-4)=5+8+6×(x-16)=6x-83,也等于进球数不到8个的人的进球数加上至少投进8个球的人的进球数,3×(x-3-4-1)+8×3+9×4+10×1,=3×(x-8)+24+36+10=3x+46。由此可得方程6x-83=3x+46,3x=129,x=43(人)。例6甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克。如果一个人带150千克的行李,除免费部分外,应另付行李费8元。求每人可免费携带的行李重量。分析与解:设每人可免费携带x千克行李。一方面,三人可免费携带3x千克行李,三人携带150千克行李超重(150-3x)千克,超重行李每千克应付4÷(150-3x)元;另一方面,一人携带150千克行李超重(150-x)千克,超重行李每千克应付8÷(150-x)元。根据超重行李每千克应付的钱数,可列方程4÷(150-3x)=8÷(150-x),4×(150-x)=8×(150-3x),600-4x=1200-24x,20x=600,x=30(千克)。练习23还剩60元。问:甲、乙二人各有存款多少元?有多少溶液?3.大、小两个水池都未注满水。若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水。已知大池容积是小池的1.5倍,问:两池中共有多少吨水?4.一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽。在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍。问:男孩、女孩各有多少人?5.教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍。问:教室里原有多少个学生?含金多少克?7.一位牧羊人赶着一群羊去放牧,跑出一只公羊后,他数了数羊的只数,发现剩下的羊中,公羊与母羊的只数比是9∶7;过了一会跑走的公羊又回到了羊群,却又跑走了一只母羊,牧羊人又数了数羊的只数,发现公羊与母羊的只数比是7∶5。这群羊原来有多少只?第24讲行程问题(一)路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间×速度,时间=路程÷速度,速度=路程÷时间。这一讲就是通过例题加深对这三个基本数量关系的理解。例1一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。已知每辆车长5米,两车间隔10米。问:这个车队共有多少辆车?分析与解:求车队有多少辆车,需要先求出车队的长度,而车队的长度等于车队115秒行的路程减去大桥的长度。由“路程=时间×速度”可求出车队115秒行的路程为4×115=460(米)。故车队长度为460-200=260(米)。再由植树问题可得车队共有车(260-5)÷(5+10)+1=18(辆)。例2骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。如果希望中午12点到,那么应以怎样的速度行进?分析与解:这道题没有出发时间,没有甲、乙两地的距离,也就是说既没有时间又没有路程,似乎无法求速度。这就需要通过已知条件,求出时间和路程。假设A,B两人同时从甲地出发到乙地,A每小时行10千米,下午1点到;B每小时行15千米,上午11点到。B到乙地时,A距乙地还有10×2=20(千米),这20千米是B从甲地到乙地这段时间B比A多行的路程。因为B比A每小时多行15-10=5(千米),所以B从甲地到乙地所用的时间是20÷(15-10)=4(时)。由此知,A,B是上午7点出发的,甲、乙两地的距离是15×4=60(千米)。要想中午12点到,即想(12-7=)5时行60千米,速度应为60÷(12-7)=12(千米/时)。例3划船比赛前讨论了两个比赛方案。第一个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。这两个方案哪个好?分析与解:路程一定时,速度越快,所用时间越短。在这两个方案中,速度不是固定的,因此不好直接比较。在第二个方案中,因为两种速度划行的时间相同,所以以3.5米/秒的速度划行的路程比以2.5米/秒的速度划行的路程长。用单线表示以2.5米/秒的速度划行的路程,用双线表示以3.5米/秒的速度划行的路程,可画出下图所示的两个方案的比较图。其中,甲段+乙段=丙段。在甲、丙两段中,两个方案所用时间相同;在乙段,因为路程相同,且第二种方案比第一种方案速度快,所以第二种方案比第一种方案所用时间短。综上所述,在两种方案中,第二种方案所用时间比第一种方案少,即第二种方案好。例4小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用3.9时。问:小明往返一趟共行了多少千米?分析与解:因为上山和下山的路程相同,所以若能求出上山走1千米和下山走1千米一共需要的时间,则可以求出上山及下山的总路程。因为上山、下山各走1千米共需所以上山、下山的总路程为在行程问题中,还有一个平均速度的概念:平均速度=总路程÷总时间。例如,例4中上山与下山的平均速度是例5一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?解:设等边三角形的边长为l厘米,则蚂蚁爬行一周需要的时间为蚂蚁爬行一周平均每分钟爬行在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,静水速度=(顺流速度+逆流速度)÷2,水流速度=(顺流速度-逆流速度)÷2。此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。例6两个码头相距418千米,汽艇顺流而
本文标题:第19讲-图形的分割与拼接
链接地址:https://www.777doc.com/doc-1276576 .html