您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 【新高考复习】第2讲 同角三角函数基本关系式与诱导公式
第2讲同角三角函数基本关系式与诱导公式一、选择题1.(2017·长沙模拟)已知α是第四象限角,sinα=-1213,则tanα=()A.-513B.513C.-125D.125解析因为α是第四象限角,sinα=-1213,所以cosα=1-sin2α=513,故tanα=sinαcosα=-125.答案C2.已知tanα=12,且α∈π,3π2,则sinα=()A.-55B.55C.255D.-255解析∵tanα=12>0,且α∈π,3π2,∴sinα<0,∴sin2α=sin2αsin2α+cos2α=tan2αtan2α+1=1414+1=15,∴sinα=-55.答案A3.1-2sin(π+2)cos(π-2)=()A.sin2-cos2B.sin2+cos2C.±(sin2-cos2)D.cos2-sin2解析1-2sin(π+2)cos(π-2)=1-2sin2cos2=(sin2-cos2)2=|sin2-cos2|=sin2-cos2.答案A4.(2017·甘肃省质检)向量a=13,tanα,b=(cosα,1),且a∥b,则cosπ2+α=()A.-13B.13C.-23D.-223解析∵a=13,tanα,b=(cosα,1),且a∥b,∴13×1-tanαcosα=0,∴sinα=13,∴cosπ2+α=-sinα=-13.答案A5.(2017·广州二测)cosπ12-θ=13,则sin5π12+θ=()A.13B.223C.-13D.-223解析sin5π12+θ=sinπ2-π12-θ=cosπ12-θ=13.答案A6.(2017·孝感模拟)已知tanα=3,则1+2sinαcosαsin2α-cos2α的值是()A.12B.2C.-12D.-2解析原式=sin2α+cos2α+2sinαcosαsin2α-cos2α=(sinα+cosα)2(sinα+cosα)(sinα-cosα)=sinα+cosαsinα-cosα=tanα+1tanα-1=3+13-1=2.答案B7.已知sinα=55,则sin4α-cos4α的值为()A.-15B.-35C.15D.35解析sin4α-cos4α=sin2α-cos2α=2sin2α-1=-35.答案B8.(2017·西安模拟)已知函数f(x)=asin(πx+α)+bcos(πx+β),且f(4)=3,则f(2017)的值为()A.-1B.1C.3D.-3解析∵f(4)=asin(4π+α)+bcos(4π+β)=asinα+bcosβ=3,∴f(2017)=asin(2017π+α)+bcos(2017π+β)=asin(π+α)+bcos(π+β)=-asinα-bcosβ=-3.答案D二、填空题9.(2016·四川卷)sin750°=________.解析sin750°=sin(720°+30°)=sin30°=12.答案1210.已知α为钝角,sinπ4+α=34,则sinπ4-α=________.解析因为α为钝角,所以cosπ4+α=-74,所以sinπ4-α=cosπ2-π4-α=cosπ4+α=-74.答案-7411.化简:sin2(α+π)·cos(π+α)·cos(-α-2π)tan(π+α)·sin3π2+α·sin(-α-2π)=________.解析原式=sin2α·(-cosα)·cosαtanα·cos3α·(-sinα)=sin2αcos2αsin2αcos2α=1.答案112.(2016·全国Ⅰ卷)已知θ是第四象限角,且sinθ+π4=35,则tanθ-π4=________.解析由题意,得cosθ+π4=45,∴tanθ+π4=34.∴tanθ-π4=tanθ+π4-π2=-1tanθ+π4=-43.答案-4313.已知sin(π+θ)=-3cos(2π-θ),|θ|π2,则θ等于()A.-π6B.-π3C.π6D.π3解析∵sin(π+θ)=-3cos(2π-θ),∴-sinθ=-3cosθ,∴tanθ=3,∵|θ|<π2,∴θ=π3.答案D14.若sinθ,cosθ是方程4x2+2mx+m=0的两根,则m的值为()A.1+5B.1-5C.1±5D.-1-5解析由题意知sinθ+cosθ=-m2,sinθ·cosθ=m4.又()sinθ+cosθ2=1+2sinθcosθ,∴m24=1+m2,解得m=1±5.又Δ=4m2-16m≥0,∴m≤0或m≥4,∴m=1-5.答案B15.sin21°+sin22°+…+sin290°=________.解析sin21°+sin22°+…+sin290°=sin21°+sin22°+…+sin244°+sin245°+cos244°+cos243°+…+cos21°+sin290°=(sin21°+cos21°)+(sin22°+cos22°)+…+(sin244°+cos244°)+sin245°+sin290°=44+12+1=912.答案91216.已知cosπ6-θ=a,则cos5π6+θ+sin2π3-θ=________.解析∵cos5π6+θ=cosπ-π6-θ=-cosπ6-θ=-a.sin2π3-θ=sinπ2+π6-θ=cosπ6-θ=a,∴cos5π6+θ+sin2π3-θ=0.答案0
本文标题:【新高考复习】第2讲 同角三角函数基本关系式与诱导公式
链接地址:https://www.777doc.com/doc-12788747 .html