您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 第2章 函数概念与基本初等函数Ⅰ 第9节 函数模型及其应用
第9节函数模型及其应用考试要求1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义;2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.1.指数、对数、幂函数模型性质比较函数性质y=ax(a1)y=logax(a1)y=xn(n0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同2.几种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)与指数函数相关的模型f(x)=bax+c(a,b,c为常数,a0且a≠1,b≠0)与对数函数相关的模型f(x)=blogax+c(a,b,c为常数,a0且a≠1,b≠0)与幂函数相f(x)=axn+b(a,b,n为常数,a≠0)关的模型1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长量越来越小.2.充分理解题意,并熟练掌握几种常见函数的图象和性质是解题的关键.3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.1.思考辨析(在括号内打“√”或“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.()(2)函数y=2x的函数值比y=x2的函数值大.()(3)不存在x0,使ax0xn0logax0.()(4)在(0,+∞)上,随着x的增大,y=ax(a1)的增长速度会超过并远远大于y=xa(a0)的增长速度.()答案(1)×(2)×(3)×(4)√解析(1)9折出售的售价为100(1+10%)×910=99(元).∴每件赔1元,(1)错误.(2)中,当x=2时,2x=x2=4.不正确.(3)中,如a=x0=12,n=14,不等式成立,因此(3)错误.2.(易错题)已知f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是()A.f(x)g(x)h(x)B.g(x)f(x)h(x)C.g(x)h(x)f(x)D.f(x)h(x)g(x)答案B解析在同一坐标系内,根据函数图象变化趋势,当x∈(4,+∞)时,增长速度大小排列为g(x)f(x)h(x).3.(易错题)当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是()A.8B.9C.10D.11答案C解析设该死亡生物体内原有的碳14的含量为1,则经过n个“半衰期”后的含量为12n,由12n11000,得n≥10.所以,若某死亡生物体内的碳14用该放射性探测器探测不到,则它至少需要经过10个“半衰期”.4.(2022·江苏新高考基地大联考)香农定理是所有通信制式最基本的原理,它可以用香农公式C=Blog21+SN来表示,其中C是信道支持的最大速度或者叫信道容量,B是信道带宽(Hz),S是平均信号功率(W),N是平均噪声功率(W).已知平均信号功率为1000W,平均噪声功率为10W,在不改变平均信号功率和信道带宽的前提下,要使信道容量增大到原来的2倍,则平均噪声功率约降为()A.0.1WB.1.0WC.3.2WD.5.0W答案A解析由题意可得S=1000,N=10,则在信道容量未增大时,信道容量为C1=Blog21+SN=Blog2101,设信道容量增大到原来的2倍时,平均噪声功率为N′W,此时信道容量C2=Blog21+1000N′=2C1,则log21012=log21+1000N′,即1+1000N′=1012,解得N′≈0.1,故选A.5.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为________.答案3解析设隔墙的长度为x(0x6),矩形面积为y,则y=x×24-4x2=2x(6-x)=-2(x-3)2+18,∴当x=3时,y最大.6.(2020·北京卷)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W与时间t的关系为W=f(t),用-f(b)-f(a)b-a的大小评价在[a,b]这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是__________.答案①②③解析-f(b)-f(a)b-a表示在[a,b]上割线斜率的相反数,-f(b)-f(a)b-a越大治理能力越强.对于①,在[t1,t2]这段时间内,甲企业对应图象的割线斜率的相反数大,故甲企业的污水治理能力比乙企业强,正确;对于②,要比较t2时刻的污水治理能力,即看在t2时刻两曲线的切线斜率,切线斜率的相反数越大,污水治理能力越强,故在t2时刻,甲企业的污水治理能力比乙企业强,正确;对于③,在t3时刻,甲、乙两企业的污水排放量都在污水达标排放量以下,正确;对于④,甲在[t1,t2]这段时间内的污水治理能力最强,错误.综上,正确的序号为①②③.考点一利用函数图象刻画变化过程1.已知高为H,满缸水量为V的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象是()答案B解析当h=0时,v=0,故可排除A,C;当h∈[0,H]时,不妨将水“流出”设想为“流入”.当h每增加一个单位增量Δh时,根据鱼缸形状可知,函数v的变化,开始其增量越来越大,经过中截面后增量越来越小,故v=f(h)的图象是先凹后凸的,故选B.2.小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图象,拟合了记忆保持量f(x)与时间x(天)之间的函数关系f(x)=-720x+1,0<x≤1,15+920x-12,1<x≤30.则下列说法错误的是()A.随着时间的增加,小菲的单词记忆保持量降低B.第一天小菲的单词记忆保持量下降最多C.9天后,小菲的单词记忆保持量低于40%D.26天后,小菲的单词记忆保持量不足20%答案D解析由函数解析式可知f(x)随着x的增加而减少,故A正确;由图象可得B正确;当1<x≤30时,f(x)=15+920x-12,则f(9)=15+920×9-12=0.35,即9天后,小菲的单词记忆保持量低于40%,故C正确;f(26)=15+920×26-12>15,故D错误.3.(2022·郑州质检)水池有两个相同的进水口和一个出水口,每个口进出水的速度如图甲、乙所示,某天0时到6时该水池的蓄水量如图丙所示,给出以下3个论断:①0时到3时只进水不出水;②3时到4时不进水只出水;③4时到5时不进水也不出水.则一定正确的论断是________(填序号).答案①解析由甲、乙、丙图可得进水速度为1,出水速度为2,结合丙图中直线的斜率可知,只进水不出水时,蓄水量增加的速度是2,故①正确;不进只出水时,蓄水量减少的速度为2,故②不正确;两个进水,一个出水时,蓄水量减少的速度也是0,故③不正确.4.(2021·西安调研)为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为73米,如图所示的散点图,记录了样本树的生长时间t(年)与树高y(米)之间的关系.请你据此判断,在下列函数模型:①y=2t-a;②y=a+log2t;③y=12t+a;④y=t+a中(其中a为正的常实数),拟合生长年数与树高的关系最好的是________(填写序号),估计该树生长8年后的树高为________米.答案②103解析由散点图的走势,知模型①不合适.曲线过点4,73,则后三个模型的解析式分别为②y=13+log2t;③y=12t+13;④y=t+13,当t=1时,代入④中,得y=43,与图不符,易知拟合最好的是②.将t=8代入②式,得y=13+log28=103(米).感悟提升1.当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选出符合实际情况的答案.2.图形、表格能直观刻画两变量间的依存关系,考查了数学直观想象核心素养.考点二二次函数模型例1(1)某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A.10.5万元B.11万元C.43万元D.43.025万元(2)某地西红柿上市后,通过市场调查,得到西红柿种植成本Q(单位:元/100kg)与上市时间t(单位:天)的数据如下表:时间t60100180种植成本Q11684116根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·bt,Q=a·logbt.利用你选取的函数,求:①西红柿种植成本最低时的上市天数是________;②最低种植成本是________元/100kg.答案(1)C(2)①120②80解析(1)设在A地销售该品牌的汽车x辆,则在B地销售该品牌的汽车(16-x)辆,所以可得利润y=4.1x-0.1x2+2(16-x)=-0.1x2+2.1x+32=-0.1(x-10.5)2+0.1×10.52+32.因为x∈[0,16]且x∈N,所以当x=10或11时,总利润取得最大值43万元.(2)因为随着时间的增加,种植成本先减少后增加,而且当t=60和t=180时种植成本相等,再结合题中给出的四种函数关系可知,种植成本与上市时间的变化关系应该用二次函数Q=at2+bt+c,即Q=a(t-120)2+m描述,将表中数据代入可得a(60-120)2+m=116,a(100-120)2+m=84,解得a=0.01,m=80,所以Q=0.01(t-120)2+80,故当上市天数为120时,种植成本取到最低值80元/100kg.感悟提升1.二次函数的最值问题一般利用配方法与函数的单调性解决,但一定要注意函数的定义域,否则极易出错.2.解决函数的应用问题时,最后要还原到实际问题.训练1(1)(2021·广州模拟)某工厂生产某种产品固定成本为2000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元.(2)某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若每年销售量为30-52R万件,要使附加税不少于128万元,则R的取值范围是()A.[4,8]B.[6,10]C.[4%,8%]D.[6%,10%]答案(1)2500(2)A解析(1)总利润L(Q)=40Q-120Q2-10Q-2000=-120Q2+30Q-2000=-120(Q-300)2+2500,则当Q=300时
本文标题:第2章 函数概念与基本初等函数Ⅰ 第9节 函数模型及其应用
链接地址:https://www.777doc.com/doc-12795938 .html