您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 第23节 空间几何体的表面积与体积(原卷版)
第23节空间几何体的表面积与体积基础知识要夯实名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=S底h锥体(棱锥和圆锥)S表面积=S侧+S底V=13S底h台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+SS下上)h球S=4πR2V=43πR3基本技能要落实考点一空间几何体的体积【例1】(2020·天津卷)已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH的体积为________.【例2】如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A.23B.33C.43D.23【方法技巧】1.(直接法)规则几何体:对于规则几何体,直接利用公式计算即可.若已知三视图求体积,应注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用公式求解.2.(割补法)不规则几何体:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.3.(等积法)三棱锥:利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.(1)求体积时,可选择“容易计算”的方式来计算;(2)利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.【跟踪训练】1.如图所示,正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为3,D为BC中点,则三棱锥A-B1DC1的体积为()A.3B.32C.1D.322.某几何体的三视图如图所示,则该几何体的体积为()A.8π-163B.4π-163C.8π-4D.4π+83考点二多面体与球的切、接问题【例2】在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.92C.6πD.263【方法技巧】1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P,A,B,C中PA,PB,PC两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【跟踪训练】1.三棱锥P-ABC中,平面PAC⊥平面ABC,AB⊥AC,PA=PC=AC=2,AB=4,则三棱锥P-ABC的外接球的表面积为()A.23πB.234πC.64πD.643π达标检测要扎实一、单选题1.由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为()A.38092mB.34046mC.324276mD.312138m2.已知一个圆锥的体积为3,其侧面积是底面积的2倍,则其底面半径为()A.23B.3C.3D.333.已知圆锥的表面积为3π,它的侧面展开图是一个半圆,则此圆锥的体积为()A.3πB.33C.3π3D.34.鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为()A.8(6623)B.6(8823)C.8(6632)D.6(8832)5.已知ABC中,90ACB,2CBAC,其顶点都在表面积为36的球O的表面上,且球心O到平面ABC的距离为2,则ABC的面积为()A.2B.4C.8D.106.在正方体1111ABCDABCD中,三棱锥11ABCD的表面积为43,则正方体外接球的体积为()A.43B.6C.323D.867.四面体ABCD的四个顶点都在球O的球面上,4ABBCCDDA,22ACBD,点E,F,G分别为棱BC,CD,AD的中点,则下列说法不正确的是().A.过点E,F,G做四面体ABCD的截面,则该截面的面积为2B.四面体ABCD的体积为1633C.AC与BD的公垂线段的长为23D.过E作球O的截面,则截面面积的最大值与最小值的比为5:48.已知正三棱锥ABCF和正四棱锥ABCDE的所有棱长均为2,如图将三棱锥ABCF的一个面和正四棱锥ABCDE的一个侧面重合在一起,得到一个新几何体,则下列关于该新几何体说法不正确的是()A.//AFCDB.AFDEC.新几何体为三棱柱D.正四棱锥ABCDE的内切球半径为22二、多选题9.用平行于棱锥底面的平面去截棱锥,得到上、下两部分空间图形且上、下两部分的高之比为1:2,则关于上、下两空间图形的说法正确的是()A.侧面积之比为1:4B.侧面积之比为1:8C.体积之比为1:27D.体积之比为1:2610.一棱长等于1且体积为1的长方体的顶点都在同一球的球面上,则该球的体积可能是()A.22B.32C.D.5211.如图,AC为圆锥SO底面圆O的直径,点B是圆O上异于A,C的动点,2SOOC,则下列结论正确的是()A.圆锥SO的侧面积为42πB.三棱锥SABC体积的最大值为83C.SAB的取值范围是,43D.若ABBC,E为线段AB上的动点,则SECE的最小值为2(31)12.已知图1中,A、B、C、D是正方形EFGH各边的中点,分别沿着AB、BC、CD、DA把ABF、BCG、CDH△、DAE△向上折起,使得每个三角形所在的平面都与平面ABCD垂直,再顺次连接EFGH,得到一个如图2所示的多面体,则()A.AEF是正三角形B.平面AEF平面CGHC.直线CG与平面AEF所成角的正切值为2D.当2AB时,多面体ABCDEFGH的体积为83三、填空题13.词语“堑堵”、“阳马”、“鳖臑”等出现自中国数学名著《九章算术・商功》,是古代人对一些特殊锥体的称呼.在《九章算术・商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体PABC,其中PA平面ABC,2PAAC,22BC,则四面体PABC的外接球的表面积为______.14.如图,在棱长为1的正方体1111ABCDABCD中,E、F、K分别为线段11AD、11CD、FC的中点,下述四个结论:①直线AE、CF、1DD共点;②直线AE、BK为异面直线;③四面体ABFE的体积为16;④线段AB上存在一点N使得直线//AE平面NFC.其中所有正确结论的序号为___________.15.已知三棱锥PABC的四个顶点在球O的球面上,PAPBPC,ABC是边长为2的正三角形,E为PA中点,52BEPB,则球O的体积为_______.16.早期的毕达哥拉斯学派学者注意到:用等边三角形或正方形为表面可构成四种规则的立体图形,即正四面体、正六面体、正八面体和正二十面体,它们的各个面和多面角都全等.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin36按35计算,则该正二十面体的表面积与该正二十面体的外接球表面积之比等于___________.四、解答题17.有一堆规格相同的铁制(铁的密度为37.8g/cm)六角螺帽共重6kg,已知该种规格的螺帽底面是正六边形,边长是12mm,内孔直径为10mm,高为10mm,(1)求一个六角螺帽的体积;(精确到30.001cm)(2)问这堆六角螺帽大约有多少个?(参考数据:3.14,31.73,2.9527.823,1.0837.88.45)18.如图,某几何体的下部分是长、宽均为8,高为3的长方体,上部分是侧棱长都相等且高为3的四棱锥,求:(1)该几何体的体积;(2)该几何体的表面积.19.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12m,高为4m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4m(高不变);二是高度增加4m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?20.某甜品店制作蛋筒冰淇淋,其上半部分呈半球形,下半部分呈圆锥形(如图).现把半径为10cm的圆形蛋皮分成相同的5个扇形,用一个扇形蛋皮围成锥形侧面(蛋皮厚度忽略不计),求该蛋筒冰淇淋的体积(精确到0.1).21.一个圆锥的底面半径为2cm,高为6cm,在其内部有一个高为xcm的内接圆柱.(1)求圆锥的侧面积;(2)当x为何值时,圆柱的侧面积最大?并求出侧面积的最大值.22.已知圆锥的侧面展开图为半圆,母线长为23.(1)求圆锥的底面积;(2)在该圆锥内按如图所示放置一个圆柱,当圆柱的侧面积最大时,求圆柱的体积.
本文标题:第23节 空间几何体的表面积与体积(原卷版)
链接地址:https://www.777doc.com/doc-12797442 .html