您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 函数的周期性-奇偶性-对称性经典小题练(含答案)
1函数的周期性练习题一.选择题(共15小题)1.定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f(x+2)且x∈(﹣1,0)时,f(x)=2x+,则f(log220)=()A.1B.C.﹣1D.﹣2.设偶函数f(x)对任意x∈R,都有f(x+3)=﹣,且当x∈[﹣3,﹣2]时,f(x)=4x,则f(107.5)=()A.10B.C.﹣10D.﹣3.设偶函数f(x)对任意x∈R都有f(x)=﹣且当x∈[﹣3,﹣2]时f(x)=4x,则f(119.5)=()A.10B.﹣10C.D.﹣4.若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=3,则f(8)﹣f(4)的值为()A.﹣1B.1C.﹣2D.25.已知f(x)是定义在R上周期为4的奇函数,当x∈(0,2]时,f(x)=2x+log2x,则f(2015)=()A.﹣2B.C.2D.56.设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(﹣2,1]上的图象,则f(2014)+f(2015)=()A.3B.2C.1D.07.已知f(x)是定义在R上的偶函数,并满足:,当2≤x≤3,f(x)=x,则f(5.5)=()A.5.5B.﹣5.5C.﹣2.5D.2.58.奇函数f(x)满足f(x+2)=﹣f(x),当x∈(0,1)时,f(x)=3x+,则f(log354)=()A.﹣2B.﹣C.D.29.定义在R上的函数f(x)满足f(﹣x)+f(x)=0,且周期是4,若f(1)=5,则f(2015)()A.5B.﹣5C.0D.310.f(x)对于任意实数x满足条件f(x+2)=,若f(1)=﹣5,则2f(f(5))=()A.﹣5B.C.D.511.已知定义在R上的函数f(x)满足f(x+5)=f(x﹣5),且0≤x≤5时,f(x)=4﹣x,则f(1003)=()A.﹣1B.0C.1D.212.函数f(x)是R上最小正周期为2的周期函数,当0≤x<2时f(x)=x2﹣x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为()A.6B.7C.8D.913.已知函数f(x)是定义在(﹣∞,+∞)上的奇函数,若对于任意的实数x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(2014)+f(﹣2015)+f(2016)的值为()A.﹣1B.﹣2C.2D.114.已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|2x2﹣4x+1|,则方程f(x)=在[﹣3,4]解的个数()A.4B.8C.9D.1015.已知最小正周期为2的函数f(x)在区间[﹣1,1]上的解析式是f(x)=x2,则函数f(x)在实数集R上的图象与函数y=g(x)=|log5x|的图象的交点的个数是()A.3B.4C.5D.6二.填空题(共10小题)16.已知定义在R上的函数f(x),满足f(1)=,且对任意的x都有f(x+3)=,则f(2014)=.17.若y=f(x)是定义在R上周期为2的周期函数,且f(x)是偶函数,当x∈[0,1]时,f(x)=2x﹣1,则函数g(x)=f(x)﹣log5|x|的零点个数为.18.定义在R上的函数f(x)满足f(x)=,则f(2013)的值为.19.定义在R上的函数f(x)的图象关于点(﹣,0)对称,且满足f(x)=﹣f(x+),f(1)=1,f(0)=﹣2,则f(1)+f(2)+f(3)+…+f(2010)的值为=.20.定义在R上的函数f(x)满足:,当x∈(0,4)时,f(x)=x2﹣1,则f(2011)=.21.定义在R上的函数f(x)满足f(x+6)=f(x).当﹣3≤x<﹣1时,f(x)=﹣(x+2)2,当﹣1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2012)=.322.若函数f(x)是周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(8)﹣f(14)=.23.设f(x)是定义在R上的以3为周期的奇函数,若f(2)>1,f(2014)=,则实数a的取值范围是.24.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),则=.25.若f(x+2)=,则f(+2)•f(﹣14)=.一.选择题(共15小题)1.【解答】解:∵定义在R上的函数f(x)满足f(﹣x)=﹣f(x),∴函数f(x)为奇函数又∵f(x﹣2)=f(x+2)∴函数f(x)为周期为4是周期函数又∵log232>log220>log216∴4<log220<5∴f(log220)=f(log220﹣4)=f(log2)=﹣f(﹣log2)=﹣f(log2)又∵x∈(﹣1,0)时,f(x)=2x+,∴f(log2)=1故f(log220)=﹣1故选C2.【解答】解:因为f(x+3)=﹣,故有f(x+6)=﹣=﹣=f(x).函数f(x)是以6为周期的函数.f(107.5)=f(6×17+5.5)=f(5.5)=﹣=﹣=﹣=.故选B3.【解答】解:∵函数f(x)对任意x∈R都有f(x)=﹣,∴f(x+3)=﹣,则f(x+6)=f(x),即函数f(x)的周期为6,4∴f(119.5)=f(20×6﹣0.5)=f(﹣0.5)=﹣=﹣,又∵偶函数f(x),当x∈[﹣3,﹣2]时,有f(x)=4x,∴f(119.5)=﹣=﹣=﹣=.故选:C.4.【解答】解:f(x)是R上周期为5的奇函数,f(﹣x)=﹣f(x),∵f(1)=﹣f(﹣1),可得f(﹣1)=﹣f(1)=﹣1,因为f(2)=﹣f(2),可得f(﹣2)=﹣f(2)=﹣3,∴f(8)=f(8﹣5)=f(3)=f(3﹣5)=f(﹣2)=﹣3,f(4)=f(4﹣5)=f(﹣1)=﹣1,∴f(8)﹣f(4)=﹣3﹣(﹣1)=﹣2,故选C;5.【解答】解:∵f(x)的周期为4,2015=4×504﹣1,∴f(2015)=f(﹣1),又f(x)是定义在R上的奇函数,所以f(2015)=﹣f(1)=﹣21﹣log21=﹣2,故选:A.6.【解答】解:由图象知f(1)=1,f(﹣1)=2,∵f(x)是定义在R上的周期为3的周期函数,∴f(2014)+f(2015)=f(1)+f(﹣1)=1+2=3,故选:A7.【解答】解:∵,∴==f(x)∴f(x+4)=f(x),即函数f(x)的一个周期为4∴f(5.5)=f(1.5+4)=f(1.5)∵f(x)是定义在R上的偶函数∴f(5.5)=f(1.5)=f(﹣1.5)=f(﹣1.5+4)=f(2.5)∵当2≤x≤3,f(x)=x∴f(2.5)=2.5∴f(5.5)=2.5故选D8.【解答】解:∵f[(x+2)+2]=﹣f(x+2)=f(x),∴f(x)是以4为周期的奇函数,又∵,∵,∴,∴f(log354)=﹣2,故选:A.59.【解答】解:在R上的函数f(x)满足f(﹣x)+f(x)=0则:f(﹣x)=﹣f(x)所以函数是奇函数由于函数周期是4,所以f(2015)=f(504×4﹣1)=f(﹣1)=﹣f(1)=﹣5故选:B10.【解答】解:∵f(x+2)=∴f(x+2+2)==f(x)∴f(x)是以4为周期的函数∴f(5)=f(1+4)=f(1)=﹣5f(f(5))=f(﹣5)=f(﹣5+4)=f(﹣1)又∵f(﹣1)===﹣∴f(f(5))=﹣故选B11.【解答】解:∵f(x+5)=f(x﹣5),∴f(x+10)=f(x),则函数f(x)是周期为10的周期函数,则f(1003)=f(1000+3)=f(3)=4﹣3=1,故选:C.12.【解答】解:当0≤x<2时,f(x)=x2﹣x=0解得x=0或x=1,因为f(x)是R上最小正周期为2的周期函数,故f(x)=0在区间[0,6)上解的个数为6,又因为f(6)=f(0)=0,故f(x)=0在区间[0,6]上解的个数为7,即函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为7,故选:B.13.【解答】解:∵f(x+2)=f(x),∴f(2014)=f(2016)=f(0)=log21=0,∵f(x)为R上的奇函数,∴f(﹣2015)=﹣f(2015)=﹣f(1)=﹣1.∴f(2014)+f(﹣2015)+f(2016)=0﹣1+0=﹣1.故选A.14.【解答】解:由题意知,f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|2x2﹣4x+1|,在同一坐标系中画出函数f(x)与y=的图象如下图:由图象可知:函数y=f(x)与y=在区间[﹣3,4]上有10个交点(互不相同),所以方程f(x)=在[﹣3,4]解的个数是10个,故选:D.15.【解答】解:∵函数f(x)的最小正周期为2,∴f(x+2)=f(x),∵f(x)=x2,y=g(x)=|log5x|∴作图如下:6∴函数f(x)在实数集R上的图象与函数y=g(x)=|log5x|的图象的交点的个数为5,故选:C二.填空题(共10小题)16.【解答】解:∵对任意的x都有f(x+3)=,∴f(x+6)==f(x),∴函数f(x)为周期函数,且周期T=6,∴f(2014)=f(335×6+4)=f(4)=f(1+3)==﹣5故答案为:﹣517【解答】解:当x∈[0,1]时,f(x)=2x﹣1,函数y=f(x)的周期为2,x∈[﹣1,0]时,f(x)=2﹣x﹣1,可作出函数的图象;图象关于y轴对称的偶函数y=log5|x|.函数y=g(x)的零点,即为函数图象交点横坐标,当x>5时,y=log5|x|>1,此时函数图象无交点,如图:又两函数在x>0上有4个交点,由对称性知它们在x<0上也有4个交点,且它们关于直线y轴对称,可得函数g(x)=f(x)﹣log5|x|的零点个数为8;故答案为8;718.【解答】解:由分段函数可知,当x>0时,f(x)=f(x﹣1)﹣f(x﹣2),∴f(x+1)=f(x)﹣f(x﹣1)=f(x﹣1)﹣f(x﹣2)﹣f(x﹣1),∴f(x+1)=﹣f(x﹣2),即f(x+3)=﹣f(x),∴f(x+6)=f(x),即当x>0时,函数的周期是6.∴f(2013)=f(335×6+3)=f(3)=﹣f(0)=﹣log2(8﹣0)=﹣log28=﹣3,故答案为:﹣3.19.【解答】解:由f(x)=﹣f(x+)得f(x+3)=f[(x+)+]=﹣f(x+)=f(x).所以可得f(x)是最小正周期T=3的周期函数;由f(x)的图象关于点(,0)对称,知(x,y)的对称点是(﹣﹣x,﹣y).即若y=f(x),则必﹣y=f(﹣﹣x),或y=﹣f(﹣﹣x).而已知f(x)=﹣f(x+),故f(﹣﹣x)=f(x+),今以x代x+,得f(﹣x)=f(x),故知f(x)又是R上的偶函数.于是有:f(1)=f(﹣1)=1;f(2)=f(2﹣3)=f(﹣1)=1;f(3)=f(0+3)=f(0)=﹣2;∴f(1)+f(2)+f(3)=0,以下每连续3项之和为0.而2010=3×670,于是f(2010)=0;故答案为0.20.【解答】解:由题意知,定义在R上的函数f(x)有,则令x=x+2代入得,∴f(x+4)===f(x),∴函数f(x)是周期函数且T=4,∴f(2011)=f(4×502+3)=f(3),∵当x∈(0,4)时,f(x)=x2﹣1,∴f(3)=8.即f(2011)=8.故答案为:8.821.【解答】解:∵当﹣3≤x<﹣1时,f(x)=﹣(x+2)2,∴f(﹣3)=﹣1,f(﹣2)=0,∵当﹣1≤x<3时,f(x)=x,∴f(﹣1)=﹣1,f(0)=0,f(1)=1,f(2)=2,又∵f(x+6)=f(x).故f(3)=﹣1,f(4)=0,f(5)=﹣1,f(6)=0,又∵2012=335×6+2,故f(1)+f(2)+f(3)+…+f(2012)=335×[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]+f(1)+f(2)=335+1+2=338,故答案为:33822.【解答】解:由题意可得,f(8)=f(8
本文标题:函数的周期性-奇偶性-对称性经典小题练(含答案)
链接地址:https://www.777doc.com/doc-1281420 .html