您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 专题11 平面向量小题全归类(练习)(解析版)
专题11平面向量小题全归类目录01平面向量基本定理及其应用............................................................................................................202平面向量共线的充要条件及其应用................................................................................................403平面向量的数量积...........................................................................................................................604平面向量的模与夹角.......................................................................................................................905等和线问题....................................................................................................................................1106极化恒等式....................................................................................................................................1507矩形大法........................................................................................................................................1708平面向量范围与最值问题..............................................................................................................1909等差线、等商线问题.....................................................................................................................2510奔驰定理与向量四心.....................................................................................................................3211阿波罗尼斯圆问题.........................................................................................................................3712平行四边形大法.............................................................................................................................4013向量对角线定理.............................................................................................................................4201平面向量基本定理及其应用1.(2023·江苏南通·高三江苏省如东高级中学校考期中)已知a,b是两个不共线的向量,23mab,42nab,3pab,则()A.568nmpB.568nmpC.11108nmpD.11108nmp【答案】C【解析】因为a,b是两个不共线的向量,设pxmyn,则233422432abxyabxbabyaxy,即243321xyxy,解得54118xy,所以5111110488nmpmn.故选:C2.(2023·安徽·高三合肥市第八中学校联考开学考试)古希腊数学家特埃特图斯(Theaetetus)利用如图所示的直角三角形来构造无理数.已知1,,,ABBCCDABBCACCDAC与BD交于点O,若DOABAC,则()A.21B.12C.21D.21【答案】A【解析】以C为坐标原点,,CDCA所在直线分别为,xy轴建立如图所示的坐标系,由题意得2AC,则22220,2,,,0,0,,2222ABCAB,0,2AC.因为1,9045135CBCDDCB,故22.5BDC,因为22tan22.5tan4511tan22.5,所以tan22.521(负值舍去),所以tan22.521OCDC,故0,21O.又1,0D,则1,21DO,因为DOABAC,所以21222122,解得21,所以21,故选:A.3.(2023·广东肇庆·统考模拟预测)如图,在平行四边形ABCD中,13AEAD,14BFBC,CE与DF交于点O.设ABa,ADb,若AOab,则()A.817B.1917C.317D.1117【答案】B【解析】连接AF,AC,,,DOF三点共线,可设AOxADyAF,则1xy,1144AOxADyABBFxADyABADxybya;,,EOC三点共线,可设AOmAEnAC,则1mn,33mmAOADnADABnbna;11143xymnmxynyn,解得:917817xy,8111717AOab,即81119171717.故选:B.02平面向量共线的充要条件及其应用4.(2023·四川成都·高一成都七中校考阶段练习)如图,在ABC中,点O满足2BOOC,过点O的直线分别交直线,ABAC于不同的两点,MN.设,ABmAM,ACnAN则22mn的最小值是()A.95B.2C.2D.355【答案】A【解析】因为2BOOC,所以1223333ACmnAOABAANM.又因为MON、、三点共线,所以2133mn.所以32mn.所以22222269(32)51295()55mnnnnnn所以当63,55nm时,22mn有最小值为95.故选:A.5.(2023·重庆北碚·高一西南大学附中校考期末)△ABC中,D为AB上一点且满足12ADDB,若P为线段CD上一点,且满足APABAC(,为正实数),则113的最小值为()A.3B.4C.5D.6【答案】B【解析】因为P为线段CD上一点,则3APxADyACCxAByAuuuruuuruuuruuuruuur,且1xy,又因为APABAC,可得3xy,即3xy,所以31,可得111133322243333,当且仅当33,即132时,等号成立,所以113的最小值为4.故选:B.6.(2023·浙江宁波·高二校联考期末)在ABC中,点O满足2COOB,过点O的直线分别交射线AB,AC于点M,N,且AMmAB,ANnAC,则2mn的最小值为()A.83B.103C.3D.4【答案】A【解析】由题可知,0,0mn,因为AMmAB,ANnAC,所以1ABAMm,1ACANn,又2COOB,所以22AOACABAO,所以21213333AOABACAMANmn,因为,,MON三点共线,所以21133mn,所以21444482(2)()233333393mnmnmnmnnm,当且仅当43321133mnnmmn,即42,33mn时,等号成立.所以2mn的最小值为83.故选:A03平面向量的数量积7.(多选题)(2021•新高考Ⅰ)已知O为坐标原点,点1(cos,sin)P,2(cos,sin)P,3(cos()P,sin()),(1,0)A,则()A.12||||OPOPB.12||||APAPC.312OAOPOPOPD.123OAOPOPOP【答案】AC【解析】法一、1(cos,sin)P,2(cos,sin)P,3(cos()P,sin()),(1,0)A,1(cos,sin)OP,2(cos,sin)OP,3(cos()OP,sin()),(1,0)OA,1(cos1,sin)AP,2(cos1,sin)AP,则221||1OPcossin,222||(sin)1OPcos,则12||||OPOP,故A正确;22221||(cos1)2cos122cosAPsincossin,22222||(cos1)(sin)2cos122cosAPcossin,12||||APAP,故B错误;31cos()0sin()cos()OAOP,12coscossinsincos()OPOP,312OAOPOPOP,故C正确;11cos0sincosOAOP,23coscos()sinsin()cos[()]cos(2)OPOP,123OAOPOPOP,故D错误.故选:AC.法二、如图建立平面直角坐标系,(1,0)A,作出单位圆O,并作出角,,,使角的始边与OA重合,终边交圆O于点1P,角的始边为1OP,终边交圆O于3P,角的始边为OA,交圆O于2P,于是1(cos,sin)P,3(cos()P,sin()),2(cos,sin)P,由向量的模与数量积可知,A、C正确;B、D错误.故选:AC.8.(2023·安徽安庆·高三安庆市第十中学校考阶段练习)已知在ABC中,3AB,4AC,π3BAC,2ADDB,P在CD上,12APACAD,则APBC.【答案】4【解析】因为12APACAD,,,PCD三点共线,所以112,解得12,因为2ADDB,所以23ADAB,则11112223APACADACAB,BCACAB,所以1123APBCACAACABB22111236ACABACAB118343462.故答案为:4.9.(2023·上海静安·高三校考阶段练习)已知向量(1,3)a,且,ab的夹角为π3,()(23)4a
本文标题:专题11 平面向量小题全归类(练习)(解析版)
链接地址:https://www.777doc.com/doc-12820484 .html