您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2024年高考数学一轮复习(新高考版) 第8章 §8.4 直线与圆、圆与圆的位置关系
公众号:高中试卷君公众号:高中试卷君§8.4直线与圆、圆与圆的位置关系考试要求1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的数学问题与实际问题.知识梳理1.直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)相离相切相交图形量化方程观点Δ0Δ=0Δ0几何观点drd=rdr2.圆与圆的位置关系(⊙O1,⊙O2的半径分别为r1,r2,d=|O1O2|)图形量的关系外离dr1+r2外切d=r1+r2相交|r1-r2|dr1+r2内切d=|r1-r2|内含d|r1-r2|3.直线被圆截得的弦长(1)几何法:弦心距d、半径r和弦长|AB|的一半构成直角三角形,弦长|AB|=2r2-d2.(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,代入,消去y,得关于x的一元二次方程,则|MN|=1+k2·xM+xN2-4xMxN.公众号:高中试卷君公众号:高中试卷君常用结论1.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.(2)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.2.圆与圆的位置关系的常用结论(1)两圆相交时,其公共弦所在的直线方程由两圆方程相减得到.(2)两个圆系方程①过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ∈R);②过圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)(其中不含圆C2,所以注意检验C2是否满足题意,以防丢解).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两圆没有公共点,则两圆一定外离.(×)(2)若两圆的圆心距小于两圆的半径之和,则两圆相交.(×)(3)若直线的方程与圆的方程组成的方程组有且只有一组实数解,则直线与圆相切.(√)(4)在圆中最长的弦是直径.(√)教材改编题1.直线3x+4y=5与圆x2+y2=16的位置关系是()A.相交B.相切C.相离D.相切或相交答案A解析圆心到直线的距离为d=532+42=14,所以直线与圆相交.2.直线m:x+y-1=0被圆M:x2+y2-2x-4y=0截得的弦长为()A.4B.23C.12D.13答案B解析∵x2+y2-2x-4y=0,∴(x-1)2+(y-2)2=5,∴圆M的圆心坐标为(1,2),半径为5,又点(1,2)到直线x+y-1=0的距离d=|1+2-1|12+12=2,∴直线m被圆M截得的弦长等于252-22=23.公众号:高中试卷君公众号:高中试卷君3.若圆C1:x2+y2=16与圆C2:(x-a)2+y2=1相切,则a的值为()A.±3B.±5C.3或5D.±3或±5答案D解析圆C1与圆C2的圆心距为d=a-02+0-02=|a|.当两圆外切时,有|a|=4+1=5,∴a=±5;当两圆内切时,有|a|=4-1=3,∴a=±3.题型一直线与圆的位置关系命题点1位置关系的判断例1(1)(多选)(2021·新高考全国Ⅱ)已知直线l:ax+by-r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法正确的是()A.若点A在圆C上,则直线l与圆C相切B.若点A在圆C内,则直线l与圆C相离C.若点A在圆C外,则直线l与圆C相离D.若点A在直线l上,则直线l与圆C相切答案ABD解析圆心C(0,0)到直线l的距离d=r2a2+b2,若点A(a,b)在圆C上,则a2+b2=r2,所以d=r2a2+b2=|r|,则直线l与圆C相切,故A正确;若点A(a,b)在圆C内,则a2+b2r2,所以d=r2a2+b2|r|,则直线l与圆C相离,故B正确;若点A(a,b)在圆C外,则a2+b2r2,所以d=r2a2+b2|r|,则直线l与圆C相交,故C错误;若点A(a,b)在直线l上,则a2+b2-r2=0,即a2+b2=r2,所以d=r2a2+b2=|r|,则直线l与圆C相切,故D正确.(2)直线kx-y+2-k=0与圆x2+y2-2x-8=0的位置关系为()A.相交、相切或相离B.相交或相切公众号:高中试卷君公众号:高中试卷君C.相交D.相切答案C解析方法一直线kx-y+2-k=0的方程可化为k(x-1)-(y-2)=0,该直线恒过定点(1,2).因为12+22-2×1-80,所以点(1,2)在圆x2+y2-2x-8=0的内部,所以直线kx-y+2-k=0与圆x2+y2-2x-8=0相交.方法二圆的方程可化为(x-1)2+y2=32,所以圆的圆心为(1,0),半径为3.圆心到直线kx-y+2-k=0的距离为|k+2-k|1+k2=21+k2≤23,所以直线与圆相交.思维升华判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系判断.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.命题点2弦长问题例2(1)(2022·北京模拟)已知圆x2+y2=4截直线y=k(x-2)所得弦的长度为2,那么实数k的值为()A.±33B.33C.3D.±3答案D解析圆x2+y2=4的圆心为(0,0),半径r=2,点(0,0)到直线y=k(x-2)的距离d=|2k|12+k2,则弦长为2r2-d2=2,得24-4k21+k2=2,解得k=±3.(2)(2023·滁州模拟)已知过点P(0,1)的直线l与圆x2+y2+2x-6y+6=0相交于A,B两点,则当|AB|=23时,直线l的方程为________.答案x=0或3x+4y-4=0解析因为圆x2+y2+2x-6y+6=0可以化为(x+1)2+(y-3)2=4,所以圆心为(-1,3),半径为r=2,因为|AB|=23,所以圆心到直线的距离为d=22-32=1,当直线l斜率不存在时,直线l的方程为x=0,此时圆心(-1,3)到直线x=0的距离为1,满足条件;当直线l斜率存在时,设斜率为k,公众号:高中试卷君公众号:高中试卷君直线l的方程为y=kx+1,则圆心(-1,3)到直线l的距离d=|-k-3+1|1+k2=1,解得k=-34,此时直线l的方程为3x+4y-4=0,综上,所求直线的方程为3x+4y-4=0或x=0.思维升华弦长的两种求法(1)代数法:将直线和圆的方程联立方程组,根据弦长公式求弦长.(2)几何法:若弦心距为d,圆的半径长为r,则弦长l=2r2-d2.命题点3切线问题例3已知点P(2+1,2-2),点M(3,1),圆C:(x-1)2+(y-2)2=4.(1)求过点P的圆C的切线方程;(2)求过点M的圆C的切线方程,并求出切线长.解由题意得圆心C(1,2),半径r=2.(1)∵(2+1-1)2+(2-2-2)2=4,∴点P在圆C上.又kPC=2-2-22+1-1=-1,∴过点P的切线的斜率为-1kPC=1,∴过点P的圆C的切线方程是y-(2-2)=1×[x-(2+1)],即x-y+1-22=0.(2)∵(3-1)2+(1-2)2=54,∴点M在圆C外.当过点M的直线的斜率不存在时,直线方程为x=3,即x-3=0.又点C(1,2)到直线x-3=0的距离d=3-1=2=r,∴直线x=3是圆的切线;当切线的斜率存在时,设切线方程为y-1=k(x-3),即kx-y+1-3k=0,由圆心C到切线的距离d′=|k-2+1-3k|k2+1=r=2,解得k=34.∴切线方程为y-1=34(x-3),即3x-4y-5=0.公众号:高中试卷君公众号:高中试卷君综上,过点M的圆C的切线方程为x-3=0或3x-4y-5=0.∵|MC|=3-12+1-22=5,∴过点M的圆C的切线长为|MC|2-r2=5-4=1.思维升华当切线方程斜率存在时,圆的切线方程的求法(1)几何法:设切线方程为y-y0=k(x-x0),利用点到直线的距离公式表示出圆心到切线的距离d,然后令d=r,进而求出k.(2)代数法:设切线方程为y-y0=k(x-x0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k.注意验证斜率不存在的情况.命题点4直线与圆位置关系中的最值(范围)问题例4(2023·龙岩模拟)已知点P(x0,y0)是直线l:x+y=4上的一点,过点P作圆O:x2+y2=2的两条切线,切点分别为A,B,则四边形PAOB的面积的最小值为________.答案23解析由圆O:x2+y2=2,得r=2,四边形PAOB的面积S=2S△PAO=|PA|·|AO|=2|PA|,∵点P(x0,y0)是直线l:x+y=4上的一点,∴P(x0,4-x0),则|PA|=|PO|2-|OA|2=|PO|2-2,又|PO|2=x20+(4-x0)2=2x20-8x0+16=2(x0-2)2+8≥8,∴|PO|2-2≥6,则|PA|≥6,∴四边形PAOB的面积的最小值为2×6=23.思维升华涉及与圆的切线有关的线段长度范围(最值)问题,解题关键是能够把所求线段长度表示为关于圆心与直线上的点的距离的函数的形式,利用求函数值域的方法求得结果.跟踪训练1(1)(2022·宣城模拟)在平面直角坐标系中,直线3xcosα+2ysinα=1(α∈R)与圆O:x2+y2=12的位置关系为()A.相切B.相交C.相离D.相交或相切答案D解析因为圆心到直线的距离d=13cos2α+2sin2α=12+cos2α≤22,当且仅当α=kπ+π2(k∈Z)时,取得等号,又圆x2+y2=12的半径为22,公众号:高中试卷君公众号:高中试卷君所以直线与圆相交或相切.(2)(2023·昆明模拟)直线2x·sinθ+y=0被圆x2+y2-25y+2=0截得的弦长的最大值为()A.25B.23C.3D.22答案D解析易知圆的标准方程为x2+(y-5)2=3,所以圆心为(0,5),半径r=3,由题意知圆心到直线2x·sinθ+y=0的距离d=|5|4sin2θ+13,解得sin2θ16,所以弦长为2r2-d2=23-54sin2θ+1,因为534sin2θ+1≤5,所以1≤54sin2θ+13,所以2r2-d2=23-54sin2θ+1∈(0,22].所以当4sin2θ+1=5,即sin2θ=1时,弦长有最大值22.题型二圆与圆的位置关系例5(1)(2023·扬州联考)已知圆C:(x-1)2+(y+22)2=16和两点A(0,-m),B(0,m),若圆C上存在点P,使得AP⊥BP,则m的最大值为()A.5B.6C.7D.8答案C解析因为两点A(0,-m),B(0,m),点P满足AP⊥BP,故点P的轨迹C1是以A,B为直径的圆(不包含A,B),故其轨迹方程为x2+y2=m2(x≠0),又圆C:(x-1)2+(y+22)2=16上存在点P,故两圆有交点,又|CC1|=12+222=3,则|4-|m||≤3≤4+|m|,解得|m|∈[1,7],则m的最大值为7.(2)圆C1:x2+y2-2x+10y-24=0与圆C2:x2+y2+2x+2y-8=0的公共弦所在直线的方程为______________,公共弦长为________.答案x-2y+4=025解析联立两圆的方程得x2+y2-2x+10y-24=0,x2+y2+2x+2y-8=0,两式相减并化简,得x-2y+4=0,公众号:高中试卷君公众号:高中试卷君即为两圆公共弦所在直线的方程.由x2+y2-2x+10y-24=0,得(x-1)2+(y+5)2=50,则圆C1的圆心坐标为(1,-5),半径r=52,圆心到直线x-2y+4=0的距离为d=|1-2×-5+4|1+-22=35.设公共弦长为2l,由勾股定理得r2=d2+l2,即50=(
本文标题:2024年高考数学一轮复习(新高考版) 第8章 §8.4 直线与圆、圆与圆的位置关系
链接地址:https://www.777doc.com/doc-12824455 .html