您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 专题10.10 统计与概率(2021-2023年)真题训练(解析版)
资料整理【淘宝店铺:向阳百分百】专题10.10统计与概率一、单选题1.(2022年高考全国甲卷数学(理)真题)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%75%70%2,所以A错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%80%20%,讲座前问卷答题的正确率的极差为95%60%35%20%,所以D错.资料整理【淘宝店铺:向阳百分百】故选:B.2.(2022年高考全国乙卷数学(文)真题)分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】对于A选项,甲同学周课外体育运动时长的样本中位数为7.37.57.42,A选项结论正确.对于B选项,乙同学课外体育运动时长的样本平均数为:6.37.47.68.18.28.28.58.68.68.68.69.09.29.39.810.18.50625816,B选项结论正确.对于C选项,甲同学周课外体育运动时长大于8的概率的估计值60.3750.416,C选项结论错误.对于D选项,乙同学周课外体育运动时长大于8的概率的估计值130.81250.616,D选项结论正确.故选:C3.(2021年全国高考甲卷数学(文)试题)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:资料整理【淘宝店铺:向阳百分百】根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%,故A正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%,故B正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%,故D正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.027.68(万元),超过6.5万元,故C错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于频率组距组距.4.(2021年全国高考甲卷数学(理)试题)将4个1和2个0随机排成一行,则2个0不相邻的概率为()资料整理【淘宝店铺:向阳百分百】A.13B.25C.23D.45【答案】C【详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C种排法,若2个0不相邻,则有2510C种排法,所以2个0不相邻的概率为1025103.故选:C.5.(2021年全国高考甲卷数学(文)试题)将3个1和2个0随机排成一行,则2个0不相邻的概率为()A.0.3B.0.5C.0.6D.0.8【答案】C【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610,故选:C.6.(2021年全国高考乙卷数学(理)试题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种【答案】C【分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的资料整理【淘宝店铺:向阳百分百】位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有254!240C种不同的分配方案,故选:C.【点睛】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.7.(2021年全国新高考II卷数学试题)某物理量的测量结果服从正态分布210,N,下列结论中不正确的是()A.越小,该物理量在一次测量中在(9.9,10.1)的概率越大B.该物理量在一次测量中大于10的概率为0.5C.该物理量在一次测量中小于9.99与大于10.01的概率相等D.该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等【答案】D【分析】由正态分布密度曲线的特征逐项判断即可得解.【详解】对于A,2为数据的方差,所以越小,数据在10附近越集中,所以测量结果落在9.9,10.1内的概率越大,故A正确;对于B,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B正确;对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C正确;对于D,因为该物理量一次测量结果落在9.9,10.0的概率与落在10.2,10.3的概率不同,所以一次测量结果落在9.9,10.2的概率与落在10,10.3的概率不同,故D错误.故选:D.8.(2022年新高考全国I卷数学真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有27C21种不同的取法,资料整理【淘宝店铺:向阳百分百】若两数不互质,不同的取法有:2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种,故所求概率2172213P.故选:D.9.(2022年高考全国甲卷数学(文)真题)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【分析】方法一:先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】[方法一]:【最优解】无序从6张卡片中无放回抽取2张,共有1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155.[方法二]:有序从6张卡片中无放回抽取2张,共有1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,6,(2,1),(3,1),(4,1),(5,1),(6,1),(3,2),(4,2),(5,2),(6,2),(4,3),(5,3),(6,3),(5,4),(6,4),(6,5)30种情况,其中数字之积为4的倍数有(1,4),(2,4),(2,6),(3,4),(4,1),(4,2),(4,3),(4,5),(4,6),(5,4),(6,2),(6,4)12种情况,故概率为122305.故选:C.【整体点评】方法一:将抽出的卡片看成一个组合,再利用古典概型的概率公式解出,是该题的最优解;方法二:将抽出的卡片看成一个排列,再利用古典概型的概率公式解出;10.(2022年新高考全国II卷数学真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有()A.12种B.24种C.36种D.48种【答案】B【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方资料整理【淘宝店铺:向阳百分百】式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224种不同的排列方式,故选:B11.(2023年新课标全国Ⅱ卷数学真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有().A.4515400200CC种B.2040400200CC种C.3030400200CC种D.4020400200CC种【答案】D【分析】利用分层抽样的原理和组合公式即可得到答案.【详解】根据分层抽样的定义知初中部共抽取4006040600人,高中部共抽取2006020600,根据组合公式和分步计数原理则不同的抽样结果共有4020400200CC种.故选:D.12.(2023年高考全国乙卷数学(理)真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种【答案】C【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有16C种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A种,根据分步乘法公式则共有1265CA120种,故选:C.13.
本文标题:专题10.10 统计与概率(2021-2023年)真题训练(解析版)
链接地址:https://www.777doc.com/doc-12824720 .html