您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 专题2.1 不等式的性质(原卷版)
专题2.1不等式的性质题型一不等式性质的应用题型二比较两个数(式)的大小题型三比较法证明不等式题型四求目标式的取值范围题型五不等式的综合应用题型一不等式性质的应用例1.(海南省2022届高三高考全真模拟卷(三)数学试题)(多选)如果abc,那么下列不等式错误的是()A.acbcB.22ababC.22abD.abbc例2.(2023秋·广东湛江·高三雷州市第一中学校考期末)(多选)已知实数a,b,c满足cba,0ac,那么下列选项中错误的是()A.0acacB.22cbcaC.abacD.0cba练习1.(2021秋·福建泉州·高三校考期中)若ab,一定成立的是()A.acbcB.22abC.22acbcD.11ab练习2.(2022秋·安徽合肥·高三校考期末)下列命题为真命题的是()A.若0ab,则22acbcB.若0ab,则22abC.若0ab,则22abD.若0ab,则11ab练习3.(2023秋·广东梅州·高三统考期末)(多选)下列结论正确的是()A.若ab,则22abB.若22acbc,则abC.若ab,cd,则acbdD.若ab,cd,则acbd练习4.(2022·海南·校联考模拟预测)(多选)已知,Rabc,则下列不等式不一定成立的是()A.22(1)(1)acbcB.2211abccccC.2221acbcD.22abab练习5.(2023·北京房山·统考一模)能够说明“设,,abc是任意实数,若abc,则acbc”是假命题的一组整数,,abc的值依次为__________.题型二比较两个数(式)的大小例3.(2022秋·河北石家庄·高一校考期中)(1)设0ab,比较2222abab与abab的大小;(2)已知0ab,0cd,0e,求证:eeacbd.例4.(2021春·陕西西安·高二西安中学校考期中)设1,75,622abc,则,,abc的大小顺序是()A.abcB.cabC.acbD.bca练习6.(2023秋·广东清远·高三统考期末)“0acb”是“abacbc”的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件练习7.(2022秋·广东江门·高三校考阶段练习)(多选)若正实数x,y满足xy,则有下列结论:①2xyy;②22xy;③1xy;④11xxy.其中正确的结论为()A.①B.②C.③D.④练习8.(2023·黑龙江齐齐哈尔·统考一模)(多选)已知a,b,0,c,则下列说法正确的是()A.若ac,bc,则abB.若ab,则ccabC.122ababD.22baabab练习9.若0ab,求证:2()abababab.练习10.(2022·高一课时练习)试比较下列组式子的大小:(1)1xx与1xx,其中1x;(2)11abMab与11baNab,其中0a,0b;(3)2222abab与abab,0ab.题型三比较法证明不等式例5.(2022秋·安徽芜湖·高一芜湖一中校考阶段练习)已知,,abc为三角形的三边长,求证:(1)222abcabbcca;(2)2444abcabbcca.例6.(2022秋·内蒙古呼和浩特·高一统考期中)证明不等式.(1)0bcad,bd>0,求证:abcdbd;(2)已知a>b>c>0,求证:bbcabacac.练习11.(1)设223Paa,13Qaa,aR.试比较P与Q的大小.(2)已知0ab,0cd,求证:abcd.练习12.(2022秋·甘肃金昌·高三永昌县第一高级中学校考阶段练习)已知0ab,0cd,求证:dcacbd.练习13.(2022秋·河南平顶山·高二叶县高级中学校考阶段练习)已知三个不等式:①0mn;②0nxmy;③0xymn(其中m,n,x,y均为实数),命题p:__________,____________________(横线上填①,②,③).请写出2种可能的命题,并判断其真假.练习14.已知,,abm都是正数.求证:“bbmaam”的充要条件是“ab”.练习15.(2022·全国·高一专题练习)(1)已知a,b,c,d均为正数.求证:ab16bccddaabcd(2)已知0xy.求证:1x1y的充要条件为xy题型四求目标式的取值范围例7.(2022秋·广东肇庆·高二校考阶段练习)已知32a,且43b,(1)23ab取值范围是__________(2)ab的取值范围是__________.例8.(2022秋·高一单元测试)(1)设27a,12b,求3ab,2ab,ab的范围;(2)已知1abc,求证:13abbcca.练习16.已知23a,21b,(1)求2ab的范围(2)求ab的范围练习17.(2020·北京·高三强基计划)已知222264,100acbc,则22ab的取值范围是__________.练习18.(2023秋·江西上饶·高三统考期末)若13x,21y,则xy的取值范围为______.练习19.(2022秋·江苏淮安·高三江苏省洪泽中学校联考期中)若13,21xy,则xy的取值范围为___________.练习20.(2022秋·河北石家庄·高三校考阶段练习)已知实数x、y满足23x,112y,则12xy的取值范围为_____________.题型五不等式的综合应用例9.(2023·广东惠州·统考一模)(多选)若62,63ab,则()A.1baB.14abC.2212abD.15ba例10.(2023·山东东营·东营市第一中学校考二模)已知3515ab,则下列结论正确的是()A.abB.22112abC.5abD.228ab练习21.(2023·宁夏银川·统考模拟预测)ab的一个充要条件是()A.11abB.22acbcC.22loglogabD.1.71.7ab练习22.(2023春·湖北咸宁·高二鄂南高中校考阶段练习)(多选)已知等比数列na中,31a,则下列选项中正确的是()A.10aB.152aaC.242aaD.9612aa练习23.(2023春·云南昭通·高三校考阶段练习)(多选)已知0x,0y,且lnyxyx,则()A.xyB.11xyyxC.ln0xyD.122yx练习24.(2023·全国·高三专题练习)(多选)已知实数,,abc满足23181abc,则下列说法正确的有()A.32abB.2bcC.121cabD.322abc练习25.(2023·全国·高三专题练习)(多选)已知2211xy,则()A.1xyB.212xyC.1xxyD.254xxy
本文标题:专题2.1 不等式的性质(原卷版)
链接地址:https://www.777doc.com/doc-12824789 .html