您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 专题14 抛物线(解析版)
资料整理【淘宝店铺:向阳百分百】专题14抛物线目录一览2023真题展现考向一直线与抛物线真题考查解读近年真题对比考向一抛物线的性质考向二直线与抛物线命题规律解密名校模拟探源易错易混速记/二级结论速记考向一直线与抛物线1.(多选)(2023•新高考Ⅱ•第10题)设O为坐标原点,直线y=−√3(x﹣1)过抛物线C:y2=2px(p>0)的焦点,且与C交于M,N两点,l为C的准线,则()A.p=2B.|MN|=83C.以MN为直径的圆与l相切D.△OMN为等腰三角形【答案】AC解:直线y=−√3(x﹣1)过抛物线C:y2=2px(p>0)的焦点,可得𝑝2=1,所以p=2,所以A正确;抛物线方程为:y2=4x,与C交于M,N两点,直线方程代入抛物线方程可得:3x2﹣10x+3=0,xM+xN=103,所以|MN|=xM+xN+p=163,所以B不正确;M,N的中点的横坐标:53,中点到抛物线的准线的距离为:1+53=83,所以以MN为直径的圆与l相切,所以C正确;资料整理【淘宝店铺:向阳百分百】3x2﹣10x+3=0,不妨可得xM=3,xN=13,yM=﹣2√3,xN=2√33,|OM|=√9+12=√21,|ON|=√19+129=√133,|MN|=163,所以△OMN不是等腰三角形,所以D不正确.【命题意图】考查抛物线的定义、标准方程、几何性质、直线与抛物线.考查运算求解能力、逻辑推导能力、分析问题与解决问题的能力、数形结合思想、化归与转化思想.【考查要点】抛物线的定义、方程、性质是高考常考内容,以小题出现,常规题,难度中等.【得分要点】一、抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.注:①在抛物线定义中,若去掉条件“l不经过点F”,点的轨迹还是抛物线吗?不一定是,若点F在直线l上,点的轨迹是过点F且垂直于直线l的直线.②定义的实质可归纳为“一动三定”一个动点M;一个定点F(抛物线的焦点);一条定直线(抛物线的准线);一个定值(点M到点F的距离与它到定直线l的距离之比等于1).二、抛物线的方程及简单几何性质类型y2=2px(p0)y2=-2px(p0)x2=2py(p0)x2=-2py(p0)图象性质焦点Fp2,0F-p2,0F0,p2F0,-p2准线x=-p2x=p2y=-p2y=p2范围x≥0,y∈Rx≤0,y∈Rx∈R,y≥0x∈R,y≤0对称轴x轴y轴顶点O(0,0)离心率e=1资料整理【淘宝店铺:向阳百分百】开口方向向右向左向上向下三、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个交点;当Δ0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.注:(1)直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.(2)研究直线与抛物线的关系时要注意直线斜率不存在的情况.四、弦长问题过抛物线y2=2px(p0)的焦点的直线交抛物线于A(x1,y1),B(x2,y2)两点,那么线段AB叫做焦点弦,如图:设AB是过抛物线y2=2px(p0)焦点F的弦,若A(x1,y1),B(x2,y2),则|AB|=x1+x2+p.注:(1)x1·x2=p24.(2)y1·y2=-p2.(3)|AB|=x1+x2+p=2psin2α(α是直线AB的倾斜角).(4)1|AF|+1|BF|=2p为定值(F是抛物线的焦点).(5)求弦长问题的方法①一般弦长:|AB|=1+k2|x1-x2|,或|AB|=1+1k2|y1-y2|.②焦点弦长:设过焦点的弦的端点为A(x1,y1),B(x2,y2),则|AB|=x1+x2+p.考向一抛物线的性质2.(多选)(2022•新高考Ⅱ)已知O为坐标原点,过抛物线C:y2=2px(p>0)焦点F的直线与C交于A,B两点,其中A在第一象限,点M(p,0).若|AF|=|AM|,则()A.直线AB的斜率为2B.|OB|=|OF|资料整理【淘宝店铺:向阳百分百】C.|AB|>4|OF|D.∠OAM+∠OBM<180°【解答】解:如图,∵F(,0),M(p,0),且|AF|=|AM|,∴A(,),由抛物线焦点弦的性质可得,则,则B(,﹣),∴,故A正确;,|OF|=,|OB|≠|OF|,故B错误;|AB|=>2p=4|OF|,故C正确;,,,,|OM|=p,∵|OA|2+|AM|2>|OM|2,|OB|2+|BM|2>|OM|2,∴∠OAM,∠OBM均为锐角,可得∠OAM+∠OBM<180°,故D正确.故选:ACD.3.(2021•新高考Ⅱ)若抛物线y2=2px(p>0)的焦点到直线y=x+1的距离为,则p=()A.1B.2C.2D.4【解答】解:抛物线y2=2px(p>0)的焦点(,0)到直线y=x+1的距离为,可得,解得p=2.故选:B.4.(2021•新高考Ⅰ)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为.【解答】解:法一:由题意,不妨设P在第一象限,则P(,p),kOP=2,PQ⊥OP.资料整理【淘宝店铺:向阳百分百】所以kPQ=﹣,所以PQ的方程为:y﹣p=﹣(x﹣),y=0时,x=,|FQ|=6,所以,解得p=3,所以抛物线的准线方程为:x=﹣.法二:根据射影定理,可得|PF|2=|FO||FQ|,可得p2=,解得p=3,因此,抛物线的准线方程为:x=﹣.故答案为:x=﹣.考向二直线与抛物线5.(多选)(2022•新高考Ⅰ)已知O为坐标原点,点A(1,1)在抛物线C:x2=2py(p>0)上,过点B(0,﹣1)的直线交C于P,Q两点,则()A.C的准线为y=﹣1B.直线AB与C相切C.|OP|•|OQ|>|OA|2D.|BP|•|BQ|>|BA|2【解答】解:∵点A(1,1)在抛物线C:x2=2py(p>0)上,∴2p=1,解得,∴抛物线C的方程为x2=y,准线方程为,选项A错误;由于A(1,1),B(0,﹣1),则,直线AB的方程为y=2x﹣1,联立,可得x2﹣2x+1=0,解得x=1,故直线AB与抛物线C相切,选项B正确;根据对称性及选项B的分析,不妨设过点B的直线方程为y=kx﹣1(k>2),与抛物线在第一象限交于P(x1,y1),Q(x2,y2),联立,消去y并整理可得x2﹣kx+1=0,则x1+x2=k,x1x2=1,,,由于等号在x1=x2=y1=y2=1时才能取到,故等号不成立,选项C正确;=资料整理【淘宝店铺:向阳百分百】,选项D正确.故选:BCD.根据近几年考题推测考查内容抛物线的定义、方程、性质,以小题出现,常规题,难度中等.一.抛物线的标准方程(共1小题)1.(2023•道里区校级二模)已知抛物线的顶点在原点,对称轴为x轴,且过点(﹣3,3),则此抛物线的标准方程为.【解答】解:抛物线的顶点在原点,对称轴为x轴,且过点(﹣3,3),设抛物线y2=﹣2px,可得9=6p,所以2p=3,所以抛物线的标准方程y2=﹣3x.故答案为:y2=﹣3x.二.抛物线的性质(共39小题)2.(2023•海淀区一模)已知抛物线y2=4x的焦点为F,点P在该抛物线上,且P的横坐标为4,则|PF|=()A.2B.3C.4D.5【解答】解:∵抛物线方程为y2=4x,∴,又点P在该抛物线上,且P的横坐标为4,∴|PF|==5.故选:D.3.(2023•润州区校级二模)图1是世界上单口径最大、灵敏度最高的射电望远镜“中国天眼”——500m口径抛物面射电望远镜,反射面的主体是一个抛物面(抛物线绕其对称轴旋转所形成的曲面称为抛物面),其边缘距离底部的落差约为156.25米,它的一个轴截面是一个开口向上的抛物线C的一部分,放入如图2所示的平面直角坐标系xOy内,已知该抛物线上点P到底部水平线(x轴)距离为125m,则点P到该抛物线焦点F的距离为()资料整理【淘宝店铺:向阳百分百】A.225mB.275mC.300mD.350m【解答】解:令抛物线方程为x2=2py且p>0,由题设,(250,156.25)在抛物线上,则312.5p=2502,解得,又P(xP,yP)且yP=125,则P到该抛物线焦点F的距离为米.故选:A.4.(2023•郑州模拟)抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的对称轴,反之,平行于抛物线对称轴的光线,经过抛物线上的一点反射后,反射光线经过该抛物线的焦点.已知抛物线C:x2=2py(p>0),一条平行于y轴的光线,经过点A(1,4),射向抛物线C的B处,经过抛物线C的反射,经过抛物线C的焦点F,若|AB|+|BF|=5,则抛物线C的准线方程是()A.B.y=﹣1C.y=﹣2D.y=﹣4【解答】解:由题意可知,抛物线的准线方程为,根据抛物线的定义可知,抛物线上的点到焦点的距离和到准线的距离相等,所以,得p=2,所以抛物线的准线方程为y=﹣1.故选:B.5.(2023•红山区模拟)已知抛物线C:y2=2px(p>0)的焦点F到准线的距离为4,点M(x1,y1),N(x2,y2)在抛物线C上,若(y1﹣2y2)(y1+2y2)=48,则=()A.4B.2C.D.【解答】解:抛物线C:y2=2px(p>0)的焦点F到准线的距离为4,则p=4,C:y2=8x,依题意,,而,,故8x1﹣32x2=48,即8x1+16=32x2+64,则x1+2=4(x2+2),故.故选:A.资料整理【淘宝店铺:向阳百分百】6.(2023•河南模拟)设F为抛物线的焦点,点P在抛物线上,点Q在准线l上,满足PQ∥x轴.若|PQ|=|QF|,则|PF|=()A.2B.C.3D.【解答】解:依题意有|PQ|=|QF|=|PF|,则△PQF为等边三角形,又PQ∥x轴,所以|PF|=|PQ|=4|OF|=2.故选:A.7.(2023•四川模拟)抛物线C:x2=4y的焦点为F,直线x﹣y+3=0与C交于A,B两点,则△ABF的面积为()A.4B.8C.12D.16【解答】解:∵抛物线C:x2=4y的焦点F为(0,1),又易知直线x﹣y+3=0与y轴交点P为(0,3),联立,可得x2﹣4x﹣12=0,解得x1=﹣2,x2=6,∴△ABF的面积为==8,故选:B.8.(2023•乌鲁木齐三模)“米”是象形字.数学探究课上,某同学用抛物线C1:y2=﹣2px(p>0)和C2:y2=2px(p>0)构造了一个类似“米”字型的图案,如图所示,若抛物线C1,C2的焦点分别为F1,F2,点P在抛物线C1上,过点P作x轴的平行线交抛物线C2于点Q,若PF1=3PQ=6,则p=()A.4B.6C.8D.10【解答】解:因为3PQ=6,即PQ=2,由抛物线的对称性知xP=﹣1,由抛物线定义可知,,即,解得p=10,故选:D.9.(2023•平罗县校级模拟)已知抛物线C:y2=20x的焦点为F,抛物线C上有一动点P,Q(6,5),资料整理【淘宝店铺:向阳百分百】则|PF|+|PQ|的最小值为()A.10B.16C.11D.26【解答】解:设抛物线C的准线为l,作PT⊥l于T,由抛物线的定义知|PF|=|PT|,所以,当P,Q,T三点共线时,|PF|+|PQ|有最小值,最小值为.故选:C.10.(2023•新疆模拟)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1,则抛物线的标准方程为()A.y2=xB.y2=2xC.y2=4xD.y2=8x【解答】解:抛物线的准线方程为x=−,根据抛物线的定义可知,抛物线C上任意一点到准线的距离比到y轴的距
本文标题:专题14 抛物线(解析版)
链接地址:https://www.777doc.com/doc-12828002 .html