您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2018高考全国Ⅱ卷文科数学(带答案解析)
文科数学试题第1页(共8页)绝密★启用前2018年普通高等学校招生全国统一考试文科数学本试卷共23题,共150分,共4页。考试结束后,将本试卷和答题卡一并交回。注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.i(2+3i)A.32iB.32iC.32iD.32i2.已知集合1,3,5,7A,2,3,4,5B则ABA.3B.5C.3,5D.1,2,3,4,5,73.函数2ee()xxfxx的图象大致为4.已知向量a,b满足||1a,1ab,则(2)aabA.4B.3C.2D.05.从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6B.0.5C.0.4D.0.36.双曲线22221(0,0)xyabab的离心率为3,则其渐近线方程为A.2yxB.3yxC.22yxD.32yx7.在ABC△中,5cos25C,1BC,5AC,则ABA.42B.30C.29D.25文科数学试题第2页(共8页)8.为计算11111123499100S,设计了右侧的程序框图,则在空白框中应填入A.1iiB.2iiC.3iiD.4ii9.在长方体1111ABCDABCD中,E为棱1CC的中点,则异面直线AE与CD所成角的正切值为A.22B.32C.52D.7210.若()cossinfxxx在[0,]a是减函数,则a的最大值是A.π4B.π2C.3π4D.π11.已知1F,2F是椭圆C的两个焦点,P是C上的一点,若12PFPF,且2160PFF,则C的离心率为A.312B.23C.312D.3112.已知()fx是定义域为(,)的奇函数,满足(1)(1)fxfx.若(1)2f,则(1)(2)(3)(50)ffffA.50B.0C.2D.50二、填空题:本题共4小题,每小题5分,共20分。13.曲线2lnyx在点(1,0)处的切线方程为__________.14.若,xy满足约束条件250,230,50,xyxyx≥≥≤则zxy的最大值为__________.15.已知51tan45πα,则tanα__________.16.已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30,若SAB△的面积为8,则该圆锥的体积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23为选考题。考生根据要求作答。(一)必考题:共60分。开始0,0NTSNTS输出1i100i1NNi11TTi结束是否文科数学试题第3页(共8页)17.(12分)记nS为等差数列{}na的前n项和,已知17a,315S.(1)求{}na的通项公式;(2)求nS,并求nS的最小值.18.(12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型①:ˆ30.413.5yt;根据2010年至2016年的数据(时间变量t的值依次为1,2,,7)建立模型②:ˆ9917.5yt.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.19.(12分)如图,在三棱锥PABC中,22ABBC,4PAPBPCAC,O为AC的中点.(1)证明:PO平面ABC;(2)若点M在棱BC上,且2MCMB,求点C到平面POM的距离.20.(12分)设抛物线24Cyx:的焦点为F,过F且斜率为(0)kk的直线l与C交于A,B两点,||8AB.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.21.(12分)PAOCBM文科数学试题第4页(共8页)已知函数321()(1)3fxxaxx.(1)若3a,求()fx的单调区间;(2)证明:()fx只有一个零点.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C的参数方程为2cos,4sin,xθyθ(θ为参数),直线l的参数方程为1cos,2sin,xtαytα(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.23.[选修4-5:不等式选讲](10分)设函数()5|||2|fxxax.(1)当1a时,求不等式()0fx≥的解集;(2)若()1fx≤,求a的取值范围.绝密★启用前2018年普通高等学校招生全国统一考试文科数学试题参考答案一、选择题1.D2.C3.B4.B5.D6.A7.A8.B9.C10.C11.D12.C二、填空题13.y=2x–214.915.326.8π三、解答题17.解:(1)设{an}的公差为d,由题意得3a1+3d=–15.由a1=–7得d=2.所以{an}的通项公式为an=2n–9.(2)由(1)得Sn=n2–8n=(n–4)2–16.文科数学试题第5页(共8页)所以当n=4时,Sn取得最小值,最小值为–16.18.解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y$=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y$=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y$=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.19.解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=23.连结OB.因为AB=BC=22AC,所以△ABC为等腰直角三角形,且OB⊥AC,OB=12AC=2.由222OPOBPB知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.文科数学试题第6页(共8页)由题设可知OC=12AC=2,CM=23BC=423,∠ACB=45°.所以OM=253,CH=sinOCMCACBOM=455.所以点C到平面POM的距离为455.20.解:(1)由题意得F(1,0),l的方程为y=k(x–1)(k0).设A(x1,y1),B(x2,y2).由2(1)4ykxyx得2222(24)0kxkxk.216160k,故212224kxxk.所以212244(1)(1)kABAFBFxxk.由题设知22448kk,解得k=–1(舍去),k=1.因此l的方程为y=x–1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为2(3)yx,即5yx.设所求圆的圆心坐标为(x0,y0),则00220005(1)(1)16.2yxyxx,解得0032xy,或00116.xy,因此所求圆的方程为22(3)(2)16xy或22(11)(6)144xy.21.解:(1)当a=3时,f(x)=3213333xxx,f′(x)=263xx.令f′(x)=0解得x=323或x=323.当x∈(–∞,323)∪(323,+∞)时,f′(x)0;当x∈(323,323)时,f′(x)0.文科数学试题第7页(共8页)故f(x)在(–∞,323),(323,+∞)单调递增,在(323,323)单调递减.(2)由于210xx,所以()0fx等价于32301xaxx.设()gx=3231xaxx,则g′(x)=2222(23)(1)xxxxx≥0,仅当x=0时g′(x)=0,所以g(x)在(–∞,+∞)单调递增.故g(x)至多有一个零点,从而f(x)至多有一个零点.又f(3a–1)=22111626()0366aaa,f(3a+1)=103,故f(x)有一个零点.综上,f(x)只有一个零点.【注】因为211()(1)(13)33fxxxxa,22131()024xxx,所以1(13)03fa,2(23)(1)0faxx.综上,f(x)只有一个零点.22.解:(1)曲线C的直角坐标方程为221416xy.当cos0时,l的直角坐标方程为tan2tanyx,当cos0时,l的直角坐标方程为1x.(2)将l的参数方程代入C的直角坐标方程,整理得关于t的方程22(13cos)4(2cossin)80tt.①因为曲线C截直线l所得线段的中点(1,2)在C内,所以①有两个解,设为1t,2t,则120tt.又由①得1224(2cossin)13costt,故2cossin0,于是直线l的斜率tan2k.23.解:(1)当1a时,24,1,()2,12,26,2.xxfxxxx文科数学试题第8页(共8页)可得()0fx的解集为{|23}xx.(2)()1fx等价于|||2|4xax.而|||2||2|xaxa,且当2x时等号成立.故()1fx等价于|2|4a.由|2|4a可得6a或2a,所以a的取值范围是(,6][2,).
本文标题:2018高考全国Ⅱ卷文科数学(带答案解析)
链接地址:https://www.777doc.com/doc-1284274 .html