您好,欢迎访问三七文档
西安工业大学继续教育学院毕业设计(论文)课题CA6140车床主轴数控加工工艺及编程所属教学单位数控系专业数控技术年级08级学号025姓名指导教师2011年2月10日-2-绪论毕业设计是大学中的一项重要内容,是完成教学计划达到教学目标,是培养我创新能力的重要环节;也是自己知识和能力深化和升华的重要过程。本毕业设计应达到以下教学目的:1、进一步加深我对机械制造工艺学理论知识的理解;2、培养我的综合应用机械制造工艺学和其他多门课程的理论知识解决实际问题的能力;培养学生的实践和实际动手能力、提高我的全面素质。3、通过查阅相关手册,掌握获取工程数据的方法,提高我收集信息、对信息进行价值判断、信息整理、信息加工的能力;4、培养我制订机械加工工艺规程的原则、步骤和方法;5、培养我掌握机床夹具设计的基本原理、方法和步骤,进一步提高我的工程设计能力;6、培养我的编写技术文件的能力。7、为即将走上工作岗位的我打下一个良好的基础-3-摘要1、主轴零件的结构特点1)主轴零件是CA6140车床中的关键零件之一,主要用以传递旋转运动和扭矩,支撑传动零件并承受载荷。2)主轴零件是回转体零件,既是阶梯轴又是空心轴,3)主轴长径比小于12,所以为刚性轴4)主轴零件的主要加工表面是内、外旋转表面,次要表面有键槽、花键、螺纹和横向孔等。2、主轴结构的设计要求1)合理的结构设计。2)足够的刚度。3)具有一定的尺寸、形状、位置精度和表面质量。4)具有足够的耐磨性、抗振性及尺寸稳定性。5)足够的抗疲劳强度。-4-目录1、零件的结构特点及设计要求......................................................2、CA6140车床主轴技术要求及功用..............................................3、零件毛坯的选择及热处理.........................................................4、基准的选择...........................................................................5、工序加工中的主要问题............................................................6、加工阶段的划分.....................................................................7、加工工序的安排和工序的确定...................................................8、工序具体内容的确定...............................................................9、指定工序数控加工编程............................................................10、零件的检验..........................................................................11、参考文献.............................................................................12、致谢...................................................................................-5-1、零件的结构特点及设计要求1、主轴零件的结构特点1)主轴零件是CA6140车床中的关键零件之一,主要用以传递旋转运动和扭矩,支撑传动零件并承受载荷。2)主轴零件是回转体零件,既是阶梯轴又是空心轴,3)主轴长径比小于12,所以为刚性轴4)主轴零件的主要加工表面是内、外旋转表面,次要表面有键槽、花键、螺纹和横向孔等。5)机械加工工艺主要是车削、磨削,其次是铣削和钻削。2、主轴结构的设计要求1)合理的结构设计。2)足够的刚度。3)具有一定的尺寸、形状、位置精度和表面质量。4)具有足够的耐磨性、抗振性及尺寸稳定性。5)足够的抗疲劳强度。2、CA6140车床主轴技术要求及功用附件1为CA6140车床主轴零件图。由零件图可知,该主轴呈阶梯状,其上有安装支承轴承、传动件的圆柱、圆锥面,安装滑动齿轮的花键,安装卡盘及顶尖的内外圆锥面,联接紧固螺母的螺旋面,通过棒料的深孔等。下面分别介绍主轴各主要部分的作用及技术要求:1、支承轴颈主轴二个支承轴颈A、B圆度公差为0.005mm,径向跳动公差为0.005mm;而支承轴颈1∶12锥面的接触率≥70%;表面粗糙度Ra为0.4mm;支承轴颈尺寸精度为IT5。因为主轴支承轴颈是用来安装支承轴承,是主轴部件的装配基准面,所以它的制造精度直接影响到主轴部件的回转精度。2、端部锥孔主轴端部内锥孔(莫氏6号)对支承轴颈A、B的跳动在轴端面处公差为0.005mm,离轴端面300mm处公差为0.01mm;锥面接触率≥70%;表面粗糙度Ra为0.4mm;硬度要求HRC45~50。该锥孔是用来安装顶尖或工具锥柄的,其轴心线必须与两个支承轴颈的轴心线严格同轴,否则会使工件(或工具)产生同轴度误差。3、端部短锥和端面头部短锥C和端面D对主轴二个支承轴颈A、B的径向圆跳动公差为0.008mm;表面粗糙度Ra为0.8mm。它是安装卡盘的定位面。为保证卡盘的定心精度,该圆锥面必须与支承轴颈同轴,而端面必须与主轴的回转中心垂直。4、空套齿轮轴颈空套齿轮轴颈对支承轴颈A、B的径向圆跳动公差为0.015mm。由于该轴颈是与齿轮孔相配合的表面,对支承轴颈应有一定的同轴度要求,否则引起主轴传动啮合不良,当主轴转速很高时,还会影响齿轮传动平稳性并产生噪声。5、螺纹主轴上螺旋面的误差是造成压紧螺母端面跳动的原因之一,所以应控制螺纹的加工精度。当主轴上压紧螺母的端面跳动过大时,会使被压紧的滚动轴承内环的轴心线产生倾斜,从而引起主轴的径向圆跳动。-6-3、零件毛坯的选择及热处理1、毛坯的形式毛坯的制造方法根据使用要求和生产类型而定。毛坯形式有棒料和磨模锻两种。前者适于单件小批生产,尤其适用于光滑轴和外圆直径相差不大的阶梯轴,对于直径较大的阶梯轴则往往采用锻件。锻件还可获得较高的抗拉、抗弯和抗扭强度。单件小批生产一般采用自由锻,批量生产则采用模锻件,大批量生产时若采用带有贯穿孔的无缝钢管毛坯,能大大节省材料和机械加工量。综上所述,我选择模锻毛坯。2、毛坯的尺寸确定毛坯尺寸的确定查表得粗加工余量7mm,半精加工余量1.6mm,精加工余量0.4mm.3、主轴的材料的选择主轴零件应根据不同的工作情况,选择不同的材料和热处理规范。一般主轴零件常用中碳钢,如45钢,经正火、调质及部分表面淬火等热处理,得到所要求的强度、韧性和硬度。转速较高的主轴零件,一般选用40Cr,经过调质和表面淬火处理,使其具有较高的综合力学性能。45钢是普通机床主轴的常用材料,淬透性比合金钢差,淬火后变形较大,加工后尺寸稳定性也较差。综上所述,主轴零件材料我选择40Cr。4、热处理工艺的制定和安排选择合适的材料并在整个加工过程中安排足够和合理的热处理工序,对于保证主轴的力学性能、精度要求和改善其切削加工性能非常重要。车床主轴的热处理主要包括:1)毛坯热处理车床主轴的毛坯热处理一般采用正火,其目的是消除锻造应力,细化晶粒,并使金属组织均匀,以利于切削加工。2)预备热处理在粗加工之后半精加工之前,安排调质处理,目的是获得均匀细密的回火索氏体组织,提高其综合力学性能,同时,细密的索氏体金相组织有利于零件精加工后获得光洁的表面。3)最终热处理-7-主轴的某些重要表面(如Φ90g5轴颈、锥孔及外锥等)需经高频淬火。最终热处理一般安排在半精加工之后,精加工之前,局部淬火产生的变形在最终精加工时得以纠正。4、基准的选择1、粗基准的选择为取得两中心孔作为精加工的定位基准,所以机械加工的第一道工序是铣两端面中心孔。为此可选择前、后支撑轴颈(或其近处的外圆表面)作为粗基准。这样,当反过来再用中心孔定位,加工支撑轴颈时,可以获得均匀的加工余量,有利于保证这两个高精度轴颈的加工精度。2、精基准的选择为了避免基准重合误差,考虑工艺基准与设计基准和各工序基准的统一,以及尽可能在一次装夹中加工较多的工作表面,所以在主轴精加工的全部工序中(二端锥孔面本身加工时除外)均采用二中心孔位定位基准。主轴中心通孔钻出以后,远中心孔消失,需要采用锥堵,借以重新建立定位精度(二端中心孔)。中心孔在使用过程中的磨损会影响定位精度,故必须经常注意保护并及时保修。特别是在关键的精加工工序之前,为了保证和提高定位精度,均需要重新修整中心孔。使用锥堵时应注意:当锥堵装入中心孔以后,在使用过程中,不能随意拆卸和更换,都会引起基准的位置变动,从而造成误差。3、基准的转换由于主轴的主要轴颈和大端锥孔的位置精度要求很高,所以在加工过程中药采用互换基准的原则,在基准相互转换的过程中,精度逐步得到提高。1)、以轴颈位粗基准加工中心孔;2)、以中心孔为基准,粗车支承轴颈等外圆各部;3)、以支承轴颈为基准,加工大端锥孔;4)、以中心孔(锥堵)为基准,加工支承轴颈等外圆各部;5)、以支撑轴颈位基准,粗磨大端锥孔;6)、以中心孔为(重配锥堵)为基准,加工支承轴颈等外圆各部;7)、以打断支撑轴颈和φ75h6外圆表面为基准,粗磨打断锥孔。主轴外圆表面的加工,应该以顶尖孔作为统一的定位基准。但在主轴的加工过程中,岁着通孔的加工,作为定位基面的中心孔消失,工艺上常采用带有中心孔的锥堵到主轴的两端孔中,如图5-4所示,让锥堵的顶尖其附加定位基准的作用。5、工序加工中的主要问题1、锥堵和锥套心轴的使用-8-对于空心的轴类零件,当通孔加工后,原来的定位基准——顶尖孔已被破坏,此后必须重新建立定位基准。对于通孔直径较小的轴,可直接在孔口倒出宽度不大于2mm的60度锥面,代替中心孔。而当通孔直径较大时,则不宜用倒角锥面代替,一般都采用锥堵或锥堵心轴的顶尖孔做为定位基准。2、使用锥堵或锥堵心轴时应注意以下问题。1)一般不宜中途更换或拆装,以免增加安装误差。2)锥堵心轴要求两个锥面应同轴,否则拧紧螺母后会使工件变形。先图所示的锥堵心轴结构比较合理,其左端锥堵与拉杆心轴为一体,其锥面与顶尖孔的同轴度较好,而右端有球面垫圈,拧紧螺母时,能保证左端锥堵与孔配合良好,使锥堵的锥面和工件的锥孔以及拉杆心轴上的顶尖孔有较好的同轴度。工序双托图主轴各外圆表面的精加工和光整加工3、主轴的精加工都是用磨削的方法,安排在最终热处理工序之后进行,用以纠正在热处理中产生的变形,最后达到所需的精度和表面粗糙度。磨削加工一般能达到的经济精度和经济表面粗糙度为IT16和Ra0.8~0.2µm。对于一般精度的车床主轴,磨削是最后的加工工序。而对于精密的主轴还需要进行光整加工。4、光整加工用于精密主轴的尺寸公差等级IT5以上或表面粗糙度低于Rɑ0.1µm的加工表面,其特点是:1)加工余量都很小,一般不超过0.2mm。2)采用很小的切削用量和单位切削压力,变形小,可获得很细的表面粗糙度。3)对上道工序的表面粗糙度要求高。一般都要求低于Rɑ0.2µm,表面不得有较深的加工痕迹。4)除镜面磨削外,其他光整加工方法都是“浮动的”,即依靠被加工表面本身自定中心。因此只有镜面磨削可部分地纠正工件的形状和位置误差,而研磨只可部分地纠正形状误差。其它光整加工方法只能用于降低表面粗糙度。由于镜面磨削的生产效率高。且适应性广,目前已广泛应用在机床主轴的光整加工中。-9-6、加工阶段的划分主轴加工过程中的加工工序和热处理工序均会不同程度的产生加工误差和应力,因此要划分加工阶段。主轴加工基本上划分为以下三个阶段。1、粗加工阶段1)毛坯处理:备料,锻造,热处理(正火)2)粗加工:工
本文标题:机械加工的论文
链接地址:https://www.777doc.com/doc-129404 .html