您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 钢的热处理工艺及原理
热处理工艺及原理任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。这种能力就是材料的力学性能。。金属材料的力学性能金属材料的力学性能是指材料在外力的作用下抵抗变形和破坏的能力,它是金属材料的主要性能之一,也是工程技术人员正确选用材料的重要依据。金属材料的力学性能是通过实验测定的。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标低碳钢的拉伸试验,应按《金属拉伸试验方法》(CU228—87)制作拉伸试样,在万能材料试验机上缓慢加载拉伸,使试样承受轴向拉力P,并引起试样沿轴向产生伸长△L(L1—L0),当载荷超过某一数值后,试样伸长迅速加大,并使试样局部直径产生缩小(称为缩颈),当载荷达到最大值时,试样断裂。如果以拉力P除以试样的原始截面积F0为纵坐标(即拉应力σ=P/Fo)。以△L除以试样原始长度L0为横坐标(即应变ε=△L/Lo),则可画㈩应力—应变图,弹性和刚性弹性和刚性在图中,当加载应力不超过σe,卸载后试样能恢复原状,即不产生永久变形,材料的这种性能称为弹性。σe为不产生永久变形的最大应力,称为弹性极限。图中oe是直线,表示应力与应变成正比,此阶段服从虎克定律,oe的斜率为试样材料的弹性模量E,即E=σ/ε弹性模量E是衡量材料产生弹性变形难易程度的指标。E越大,则使其产生一定弹性变形的应力也愈大。因此,工程上把它叫做材料的刚度。刚度表征材料弹性变形抗力的大小。弹性模量E主要决定于材料的本身,是金属材料最稳定的性能之一,合金化、热处理、冷热加工对它的影响很小。在室温下,钢的弹性模量E大都在190~220GPa之间。弹性模量随温度的升高而逐渐降低。强度强度强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。强度指标一般用单位面积所承受的载荷即力表示,符号为σ,单位为MPa。工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用σb表示。对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,而用抗拉强度作为其强度设计的依据。屈服极限如图1,1.1所示,在s点(屈服点)出现一水平线段,这表明拉力虽然不再增加,但变形仍在进行,此时若卸载,试样的变形不能全部消失,将保留一部分残余的变形。这种不能恢复的残余变形,叫做塑性变形。σs表示材料在外力的作用下开始产生塑性变形的最低应力,称为屈服极限。有些材料的拉伸曲线上没有明显的屈服点s,难以确定开始塑性变形的最低应力值,此时规定试样产生0.2%残余变形时的应力值,为该材料的条件屈服极限,以σ0.2表示。构件在工作中一般不允许发生塑性变形。所以屈服极限σ是设计时的主要参数,是材料力学性能的—个重要指标。强度极限强度极限为试样被拉断前的最大承载能力,如图1.1.1所示的σb值,σb也是设计和选材的主要参数之σs/σb叫屈强比,屈强比愈小,构件的使用可靠性愈高。屈强比太小,则材料强度的有效利用率太低。合金化、热处理、冷热加工对材料的σs、σb影响很大。一塑性在外力的作用下,材料发生不能恢复的变形称为塑性变形,产生塑性变形而不断裂的性能称为塑性。塑性大小用伸长率δ和断面收缩率ψ来表塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力。工程中常用的塑性指标有伸长率和断面收缩率。伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号δ表示。断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用y表示。伸长率和断面收缩率越大,其塑性越好;反之,塑性越差。良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件。硬度硬度是指材料表面抵抗比它更硬的物体压入的能力。硬度是材料的重要力学性能指标。一般材料的硬度越高,其耐磨性越好。材料的强度越高,塑性变形抗力越大,硬度值也越高。一、布氏硬度用一定直径的钢球或硬质合金球,以相应的试验力压入试件表面,经规定保持时间后,卸除试验力,测量试样表面的压痕直径,之后将测得参数代入计算公式,即可得布氏硬度值:HB=F/S(N/mm2),F-所加压力,S-压痕表面积,可通过钢球直径和压痕直径计算。2、布氏硬度特点优点:测量数值稳定,准确,一般不标单位缺点:操作慢,不适用批量生产和太薄、太硬(>450HB)的材料3、布氏硬度的应用范围:铸铁,有色金属,退火、正火、调质处理钢,原材料,毛坯4、布氏硬度的表示方法:HBS:淬火钢球,HBW:硬质合金球如200HBW10/1000/30表示用直径10mm的硬质合金压头在1000kgf(9807kN)作用下保持30s(持续时间10~15s时,可以不标注洛氏硬度当HB450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。洛氏硬度是以顶角为120°的金刚石圆锥体或直径为Φ1.588㎜的淬火钢球作压头,以规定的试验力使其压入试样表面。试验时,先加初试验力,然后加主试验力。压入试样表面之后卸除主试验力,在保留初试验力的情况下,根据试样表面压痕深度,确定被测金属材料的洛氏硬度值。在规定条件下,将压头(金刚石圆锥、钢球或硬质合金球)分2个步骤压入试样表面。卸除主试验力后,在初试验力下测量压痕残余深度h。以压痕残余深度h代表硬度的高低。洛氏硬度试验原理如图所示。1—在初始试验力F0下的压入深度;2—在总试验力F0+F1下的压入深度;3—去除主试验力F1后的弹性回复深度;4—残余压入深度h;5—试样表面;6—测量基准面;7—压头位置洛氏硬度的三种标尺中,以HRC应用最多,一般经淬火处理的钢或工具都采用HRC测量。在中等硬度情况下,洛氏硬度HRC与布氏硬度HBS之间关系约为1:10,如40HRC相当于400HBS。如50HRC,表示用HRC标尺测定的洛氏硬度值为50。硬度值应在有效测量范围内(HRC为20-70)为有效洛氏硬度值由h的大小确定,压入深度h越大,硬度越低;反之,则硬度越高。一般说来,按照人们习惯上的概念,数值越大,硬度越高。因此采用一个常数c减去h来表示硬度的高低。并用每0.002㎜的压痕深度为一个硬度单位。由此获得的硬度值称为洛氏硬度值,用符号HR表示2、洛氏硬度特点优点:操作简便,压痕小,可用于成品和薄形件缺点:测量数值分散,不如布氏硬度测量准确维氏硬度(HV)测量方法和布氏硬度相似。以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。硬度试验是机械性能试验中最简单易行的一种试验方法。为了能用硬度试验代替某些机械性能试验,生产上需要一个比较准确的硬度和强度的换算关系。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。第三节冲击韧性一、概念:冲击载荷作用下,金属材料抵抗破坏的能力,其值以冲击韧度αku表示,αku越大,材料的韧性越好,在受到冲击时越不易断裂。二、冲击韧度概念:冲击韧度反应了材料抵抗冲击载荷的能力。指标:冲击韧度αku=Aku/S(J/cm2)Aku——冲击功,摆锤冲断试样所失去的能量,即对试样断裂所作的功,S——试样缺口处截面积第四节疲劳强度一、交变应力:大小、方向随时间周期性变化的应力称为交变应力。二、疲劳现象:材料在交变载荷长期作用下,无明显塑性变形就断裂。三、疲劳极限:材料经无限多次应力循环而不断裂的最大应力,它表示材料抵抗疲劳断裂的能力。当循环的应力是对称循环交变应力时,疲劳强度用σ-1表示。第五章钢的热处理将固态金属或合金,采用适当的方式进行加热、保温和冷却,以获得所需组织结构与性能的工艺方法称热处理。第五章钢的热处理实质:在加热、保温和冷却过程中,钢的组织结构发生了变化,从而改变了其性能;目的:改善钢(工件)的力学性能或工艺性能;作用:充分发挥材料的性能潜力,提高零件质量,延长零件寿命;应用:十分广泛。第五章钢的热处理按目的、加热条件和特点不同,热处理分为:整体热处理表面热处理化学热处理其它热处理热处理的工艺参数有:加热温度保温时间冷却方式目的:通过加热使原始组织转变为奥氏体;将钢加热至Ac3或Ac1以上,获得完全或部分奥氏体组织的操作称为奥氏体化。钢热处理加热的临界温度为727℃。§5.1钢在加热时的组织转变§5.1钢在加热时的组织转变在实际生产中,由于加热和冷却不是很缓慢,因此实际发生组织转变的温度与相图的A1、A3、Acm有一定的偏离。通常加热用Ac1、Ac3、Accm表示,冷却用Ar1、Ar3、Arcm表示。(一)奥氏体的形成1.奥氏体晶核的形成奥氏体的晶核易于在渗碳体相界面上形成。这是因为在两相的相界上为形核提供了良好的条件。2.奥氏体晶核的长大A形核后,由于A与Fe3C形界处的含C量不同。将引起A中C的扩散。通过Fe、C原子的扩散和Fe原子的晶格改组,A向F和Fe3C两个方向长大。3.残余渗碳体溶解在奥氏体形成过程中,铁素体比渗碳体先消失,因此奥氏体形成之后,还残存未溶渗碳体。这部分未溶的残余渗碳体将随着时间的延长,继续不断地溶入奥氏体,直至全部消失。4.奥氏体均匀化渗碳体完全溶解后奥氏体中碳的浓度分布并不均匀,原先是渗碳体地方碳浓度高,原先铁素体的地方碳浓度低。必须继续保温,通过碳的扩散,使奥氏体成分均匀化。(二)影响奥氏体转变的因素1.加热温度和加热速度的影响提高加热温度,将加速A的形成。随着加热速度的增加,奥氏体形成温度升高(AC1越高),形成所需的时间缩短。2.化学成分的影响随着钢中含碳量增加,铁素体核渗碳体相界面总量增多,有利于奥氏体的形成。3.原始组织的影响由于奥氏体的晶核是在铁素体和渗碳体的相界面上形成,所以原始组织越细,相界面越多,形成奥氏体晶核的"基地"越多,奥氏体转变就越快。(三)奥氏体晶粒大小及其控制1.奥氏体晶粒大小一般根据标准晶粒度等级图确定钢的奥氏体晶粒大小。标准晶粒度等级分为8级,1~4级为粗晶粒度,5~8级为细晶粒度。2.实际晶粒度和本质晶粒度某一具体热处理或热加工条件下的奥氏体的晶粒度叫实际晶粒度,它决定钢的性能。钢在加热时奥氏体晶粒长大的倾向用本质晶粒度来表示。钢加热到930℃±10℃、保温8小时、冷却后测得的晶粒度叫本质晶粒度。如果测得的晶粒细小,则该钢称为本质细晶粒钢,反之叫本质粗晶粒钢。3.奥氏体晶粒大小的控制(1)合理选择加热温度和保温时间随着温度升高晶粒度将之间长大。温度愈高,晶粒长大于愈明显。在一定温度下,保温时间愈长,奥氏体晶粒也越粗大。(2)加入合金元素奥氏体中的含碳量增高时,晶粒长大的倾向增多。若碳以未溶的碳化物形式存在,则它有阻碍晶粒长大的作用。(3)合理选择原始组织§5.2钢在冷却时的组织转变冷却是热处理的最后一个工序,也是最关键的工序,它决定了钢热处理后的组织和性能。同一种钢,加热温度和保温时间相同,冷却方法不同,热处理后的性能截然不同。这是因为过冷奥氏体在冷却过程中转变成了不同的产物。那么奥氏体在冷却时转变成什么产物?有什么规律呢?这就是本次课的主要内容。§5.2钢在冷却时的组织转变当温度在A1以上时,奥氏体是稳定的。当温度降到A1以下后,奥氏体即处于过冷状态,这种奥氏体称为过冷奥氏体。过冷A是不稳定的,会转变为其它的组织。钢在冷却时的转变,实质上是过冷A的转变。连续冷却转变——使加热到奥氏体化的钢连续降温进行组织转变等温冷却转变——使加热到奥氏体化的钢以较快的冷却速度冷到A1以下某温度保温,
本文标题:钢的热处理工艺及原理
链接地址:https://www.777doc.com/doc-1302568 .html