您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 柴油生产现状及技术进展
生物柴油生产现状及技术进展生物柴油由未使用过的或使用过的植物油(可食用和不可食用的)与动物脂肪,通过各种化学过程生产,最常见的是反酯化法。由三甘油酯(所有天然油和脂肪的主要成分)生成甲酯、乙酯或较高级的醇酯。三甘油酯与醇类在催化剂存在下生成脂肪酸酯,脂肪酸酯的物化性质与石油基柴油相似。柴油分子由15个烃链组成,植物油分子一般由14~18个烃链组成,与柴油分子相似。因此,用菜子油等可再生植物油或动物脂肪可加工制取新型燃料—生物柴油。生物柴油合成采用比较简单的酯基转移反应(反酯化),只需油、醇和催化剂,醇类现多选用甲醇,可使植物油与醇类生成酯类并联产丙三醇(甘油)。反酯化工艺基于碱催化或酸催化,碱催化反酯化优于酸催化,过程转化率高(大于98%),在常压(0.14MPa)和低温(~66℃)下进行,可直接转化无中间步骤。油的分子是三甘油酯,含有3个脂肪酸链,联结于甘油分子骨架上。催化剂一般采用氢氧化钠,催化剂用量为植物油的~1m%。催化剂的作用是使链断开并与甲醇反应生成甲酯,副产甘油(丙三醇)。世界各国生产生物柴油所用的原料不尽相同,美国使用大豆籽和动物脂肪,欧洲使用油菜籽和动物脂肪,日本使用动物脂肪,马来西亚使用椰子油籽,印度使用非食用植物油。欧洲和北美利用过剩的菜子油和豆油为原料生产生物柴油获得推广应用。生物柴油优点:与矿物柴油相比,生物柴油具有环境友好特点,其柴油车尾气中有毒有机物排放量仅为1/10,颗粒物为20%,CO2和CO排放量仅为10%。按照京都议定书,欧盟2008~2012年间要减少CO2排放8%,就燃料对整个大气CO2影响的生命循环分析(LCA)指出,生物柴油排放的CO2比矿物柴油要少约50%。生物柴油通常可与石油基柴油调合使用,现一般调入20%。调合油的效益是:含硫很低(0~24PPm)、高十六烷值(46~70,如采用加氢裂化工艺为100)。调合油甚至优于欧Ⅳ柴油。生物柴油可大大减少未燃尽烃类、CO和颗粒物质排放。调合20%生物柴油的调合油,可减少排放如下:总的未燃尽烃类20%、CO12%、颗粒物质12%、硫酸盐20%、多环芳烃13%、硝化多环芳烃50%、特定烃类的潜在臭氧量10%。生物柴油为清洁燃料,几乎不含硫、无芳烃、含氧约10%(有助于充分燃烧)。柴油机无需改造,不像其他替代燃料如CNG、LNG和乙醇调合油需改造发动机。另外,可改进润滑性,生物柴油的长链脂肪酸的酯类是喷射系统极好的润滑剂。石油基柴油脱硫过程也大大损害了润滑性(特别是含硫从500PPm减少到50/10PPm)。加入极少量(1~2%)生物柴油的调合油就可使润滑性提高提高65%。各国生物柴油的应用情况欧盟最近发布了两项新的指令以推进生物燃料在汽车燃料市场上的应用,这将进一步推动欧洲生物柴油工业的发展。与常规柴油相比,生物柴油价格要贵一倍以上,为此,指令要求欧盟各国降低生物柴油税率,并对生物柴油在欧洲汽车燃料中的销售比例作出规定。这将有助于欧洲生物柴油市场价值由2000年5.04亿美元提高到2007年24亿美元,年增长率可望达到25%。德国现有8家生物柴油生产厂,拥有300多个生物柴油加油站,2003年生产生物柴油50万吨/年,不久将达到90万吨/年。并制定了生物柴油标准DINV51606,对生物柴油不收税。法国有7家生物柴油生产厂,总能力为40万吨/年。使用标准是在普通柴油中掺加5%生物柴油,对生物柴油的税率为零。意大利有9个生物柴油生产厂,总能力33万吨/年,对生物柴油的税率为零。奥地利有3个生物柴油生产厂,总能力5.5万吨/年,税率为石油柴油的4.6%。比利时有2个生物柴油生产厂,总能力24万吨/年。英国生物燃料公司在英国锡尔圣兹投资2100万英镑(3780万美元)以豆油为原料建设生物柴油装置,该装置能力为25万吨/年生物柴油、1.96万吨/年医药级和2700吨/年工业级甘油,以及600吨/年硫酸钾化肥。该装置于2005年1季度投产。生物燃料公司还计划在当地于2005年再建第二套装置,使生物柴油能力翻番,达到50万吨/年。该公司另计划于2007~2009年在英国或欧洲其他地区再建三套装置,总能力为75万吨/年。芬兰能源公司富腾(Fortum)公司将在芬兰南部城市波尔沃建设专门生产生物柴油的加工厂。这座耗资1亿欧元的生物柴油加工厂将于2007年夏季投产。该加工厂从植物油和动物脂肪中提炼高质量的柴油,预计每年可生产生物柴油17万吨。这种生物柴油可供各种以柴油作燃料的机动车辆使用,可减少汽车的废气排放量。欧洲其他国家的生物柴油生产量为:捷克和斯洛伐克10万吨/年。由于用于加工生物柴油的植物油是可更新的原料,在欧盟鼓励其成员国增加使用可更新原料的情况下,欧盟成员国对生物柴油的需求量今后将会进一步增加。目前,美国有4家生物柴油生产厂,总能力为30万吨/年。在普通柴油中的掺入量为10%~20%。生物柴油的税率为零。美国GreenStar产品公司所属子公司美国生物燃料(ABF)有限公司正在加利福尼亚州建设美国最大的生物柴油生产装置,设计生产能力为3500万加仑/年(约12万吨/年)。为了减少装置的占地面积及投资和操作成本,该装置采用连续流动工艺。在装置的建设中,使用ABF拥有专利权的单元反应器/分离器,每个单元反应器/分离器的生产能力为250万加仑/年,这种单元组件安装非常方便,可以根据市场需求的情况来进行扩能。该装置己于2003年开始进行生物柴油生产。巴西生物柴油法令LEINo.11097巳获通过,2008年1月起正式推行。B-2柴油(2%生物柴油/98%常规柴油)于2008年1月起执行,B-5柴油(5%生物柴油/95%常规柴油)标准也巳颁布。亚洲国家也在兴起生物柴油产业。马来西亚产能为50万吨/年。本生物柴油生产能力达到40万吨/年。泰国发展生物柴油计划于2001年7月发布,泰国石油公司承诺每年收购7万吨棕榈油和2万吨椰子油,实施税收减免,泰国第一家生物柴油装置已经投运。据美国Freedonia咨询公司研究分析,生物柴油需求将快速增长,到2006年增速为30%,生物柴油市场价值将从2003年3500万美元增长到2006年1.3亿美元。生物柴油的生产技术进展新开发的生产生物柴油的反酯化方法可克服碱催化反酯化的缺点,如甘油回收和催化剂脱除困难、反应不完全,以及当油中含有游离脂肪酸和/或水时会生成皂化产物。传统的碱催化方法从三甘油酯和甲醇生产脂肪酸甲酯存在几个问题,包括在室温下反应速率太慢。植物油的催化反酯化(特别是反甲基化)生产生物柴油甲酯过程很慢,这是因为初期反应混合物由两相组成,因此反应受到传质限制。生物柴油的工业化生产作为石油基柴油的替代路线往往还不甚经济,因为其生产费用为石油基柴油的约3倍。现在的生物柴油生产商仍采用高压、高温方法,速度慢且能耗高;采用化学方法也不能低成本地生产达到ASTM标准的生物柴油。加拿大BIOX公司正在将DavidBoocock公司开发的技术(美国专利6642399和6712867)推向工业化,该工艺不仅可提高转化速度和效率,而且可采用酸催化步骤使含游离脂肪酸高达30%的任意原料(包括大豆油、废弃的动物脂肪和回收的植物油)转化为生物柴油,该工艺可降低生产费用高达50%,如果商业化成功,可望使生物柴油生产费用与石油基柴油相竞争。BIOX公司自2001年4月起己在加拿大奥克韦尔(Oakville)100万升/年中型装置上验证了称为BIOX的工艺,现正在HamiltonHarbour生产地投资2400万美元建设6000万升/年生物柴油装置放大BIOX工艺,该装置于2005年6月投运,这将是BIOX公司第一套工业化装置。在BIOX工艺中,脂肪酸首先在酸催化反应中转化成甲酯,反应在接近甲醇(溶剂)60℃的沸腾温度下,在柱塞流反应器(PFR)中进行,40分钟反应后,在相似条件下,在第二台PFR中采用专用的共溶剂进行碱催化反应,三甘油酯在几秒内就转化成生物柴油和丙三醇副产物,99.5%以上未使用的甲醇和共溶剂循环利用,回收冷凝潜热用以加热进料。新开发的方法使用共溶剂,可形成富油单相系统,因此反应可在室温下快速进行,10分钟内反应可完成95%,而现用工艺要几个小时。该工艺已在德国莱尔(Leer)8万吨/年验证装置上应用,第二套10万吨/年装置也在德国汉堡投运。在新工艺中,惰性的共溶剂使之形成富油、单相系统,整个反应在该系统中进行,因此可提高传质和反应速率。碱催化步骤在接近室温和常压下于几分钟内完成,它与酸催化步骤结合在一起,使BIOX工艺可连续进行。BIOX工艺还克服了生物柴油现有生产路线的另外一些缺点,包括必须使系统达到所需纯度,以免反应中断,以及它们不能处理含脂肪酸大于1%的物料。使用常规技术生产生物柴油的成本因原料而变化,原料占生物柴油生产费用约75%~85%,因此采用低费用的原料达到高的转化率至关重要。Diester工业公司在法国塞特建设生产脂肪酸甲酯(FAME)的新装置,16万吨/年的装置将于2005年底投产,这将是采用Axens公司Esterfip-H工艺的第一套工业化装置。塞特装置的建设符合欧盟指令2003/EC3117目标要求,该指令要求到2010年使生物燃料用量达到5.75%,生物燃料可减少温室气体总排放量和使欧盟减小对原油进口的依赖。生物柴油的主要组分FAME通过植物油如菜子油、大豆油和葵花子油来生产。Esterfip-H工艺由法国石油研究院(IFP)研发,由Axens公司推向商业化。第一套工业化Esterfip工艺装置于1992年建于法国Diester工业公司维尼特地区,基于均相催化剂。而新装置则采用多相催化剂—两种非贵金属的尖晶石混合氧化物,属首次应用,它可避免采用均相催化剂如氢氧化钠或甲醇钠的工艺所需的几个中和、洗涤步骤,以及不会产生废物流。此外,来自Esterfip-H工艺的丙三醇副产物的纯度大于98%,而采用均相催化剂路线时,其纯度约为80%。这种副产物的利用可提高整个生产的经济性。在连续法Esterfip-H工艺中,反酯化反应采用过量甲醇在比均相催化剂工艺温度较高的条件下进行,过量甲醇用蒸发方法除去,并循环至工艺过程,与新鲜甲醇相混合。该化学转化采用两个串联的固定床反应段来达到,分离丙三醇以改变平衡。每一反应器后的过量甲醇通过部分闪蒸除去,酯类和丙三醇再在沉降器中分离。生物柴油在甲醇最后回收后通过减压蒸发予以回收,然后提纯去除微量丙三醇。甲酯纯度超过99%,产率接近100%。再一先进的工艺是在连续流动反应器中采用油与甲醇强化混合,2002年采用这一技术的10×104t/a生物柴油装置己建于德国玛尔(Marl),从该过程可回收1.2万吨/年高级丙三醇。该技术也在美国加州里弗代尔(Riverdale)南方动力公司的10万吨/年装置上应用。另一创新工艺是采用连续反酯化反应器(CTER),这一新技术可降低投资费用,Amadeus公司在澳大利亚西部建设的3.5×104t/a生物柴油装置将采用CTER技术。目前生物柴油主要采用化学法生产,现正在研究生物酶法合成生物柴油技术。用发酵法(酶)制造生物柴油,混在反应物中的游离脂肪酸和水对酶催化剂无影响,反应液静置后,脂肪酸甲酯即可分离。日本大阪市立工业研究所成功开发使用固定化脂酶连续生产生物柴油,分段添加甲醇进行反应,反应温度为30℃,植物油转化率达95%,脂酶连续使用100天仍不失活。反应后静置分离,得到的产品可直接用作生物柴油。通过加氢裂化方法也可生产生物柴油,现已开发了几种新工艺。加氢裂化方法不联产丙三醇。可将植物油转化为高十六烷值(~100)、低硫柴油,可加工宽范围原料包括高含游离酸的物料。加氢裂化过程中发生几种反应,包括加氢裂化、加氢处理和加氢。产率为75%~80%,十六烷值高(~100),硫含量10PPm。28天后可生物降解95%,而石油基柴油在同样时间内降解40%。与其他生物柴油比,主要优点是可降低NOx排放。该工艺采用常规的炼厂加氢处理催化剂和氢气,可供炼油厂选用,因有氢气可用,可方便地与炼油厂组合在一起。我国开发现状目前我国生物柴油的研发和生
本文标题:柴油生产现状及技术进展
链接地址:https://www.777doc.com/doc-1327315 .html