您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学概率选择题(精华版)-高中课件精选
高考高中教育高中数学概率选择题(精华版)一.选择题(共25小题)1.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是()A.10个B.15个C.16个D.18个2.设集合A={x|x>2},若m=lnee(e为自然对数底),则()A.∅∈AB.m∉AC.m∈AD.A⊆{x|x>m}3.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.4.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A.B.C.D.5.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.B.C.D.6.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.7.已知随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2.若0<p1<p2高考高中教育<,则()A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)8.同时掷两个质地均匀的骰子,向上点数之积为12的概率是()A.B.C.D.9.如图,点E是边长为2的正方形ABCD的CD边中点,若向正方形ABCD内随机投掷一点,则所投点落在△ABE内的概率为()A.B.C.D.10.如图,圆O内有一个内接三角形ABC,且直径AB=2,∠ABC=45°,在圆O内随机撒一粒黄豆,则它落在三角形ABC内(阴影部分)的概率是()A.B.C.D.11.甲抛掷均匀硬币2017次,乙抛掷均匀硬币2016次,下列四个随机事件的概率是0.5的是()①甲抛出正面次数比乙抛出正面次数多;②甲抛出反面次数比乙抛出正面次数少;③甲抛出反面次数比甲抛出正面次数多;④乙抛出正面次数与乙抛出反面次数一样多.高考高中教育A.①②B.①③C.②③D.②④12.将一枚质地均匀的硬币连续抛掷n次,若使得至少有一次正面向上的概率大于或等于,则n的最小值为()A.4B.5C.6D.713.在区间[﹣π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax﹣b2+π有零点的概率为()A.B.C.D.14.从数字1,2,3,4,5这五个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是()A.B.C.D.15.现有三张卡片,正面分别标有数字1,2,3,背面完全相同,将卡片洗匀,背面向上放置,甲、乙二人轮流抽取卡片,每人每次抽一张,抽取后不放回,甲先抽.若二人约定,先抽到标有偶数的卡片者获胜,则甲获胜的概率是()A.B.C.D.16.某班级为了进行户外拓展游戏,组成红、蓝、黄3个小队.甲、乙两位同学各自等可能地选择其中一个小队,则他们选到同一小队的概率为()A.B.C.D.17.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望EX>1.75,则p的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)18.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为和P,且甲、乙两人各射击一次得分之和为2的概率为.假设甲、乙两人射击互不影响,则P值为()A.B.C.D.高考高中教育19.假设每一架飞机的引擎在飞行中出现故障率为1﹣p,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎正常运行,飞机就可成功飞行;2引擎飞机要2个引擎全部正常运行,飞机也可成功飞行,要使4引擎飞机比2引擎飞机更安全,则P的取值范围是()A.(,1)B.(,1)C.(0,)D.(0,)20.某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为,两次闭合后都出现红灯的概率为,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为()A.B.C.D.21.设随机变量ξ~B(2,p),η~B(3,p),若P(ξ≥1)=,则P(η≥2)的值为()A.B.C.D.22.设M、N为两个随机事件,给出以下命题:(1)若M、N为互斥事件,且,,则;(2)若,,,则M、N为相互独立事件;(3)若,,,则M、N为相互独立事件;(4)若,,,则M、N为相互独立事件;(5)若,,,则M、N为相互独立事件;其中正确命题的个数为()A.1B.2C.3D.423.将一枚质地均匀的硬币连续抛掷n次,事件“至少有一次正面向上”的概率为,则n的最小值为()A.4B.5C.6D.724.余江人热情好客,凡逢喜事,一定要摆上酒宴,请亲朋好友、同事高邻来助兴庆贺.欢度佳节,迎亲嫁女,乔迁新居,学业有成,仕途风顺,添丁加口,朋友相聚,都要以酒示意,借酒表达内心的欢喜.而凡有酒宴,一定要划拳,划拳高考高中教育是余江酒文化的特色.余江人划拳注重礼节,形式多样;讲究规矩,蕴含着浓厚的传统文化和淳朴的民俗特色.在礼节上,讲究“尊老尚贤敬远客”一般是东道主自己或委托桌上一位酒量好的划拳高手来“做关”,﹣﹣就是依次陪桌上会划拳的划一年数十二拳(也有半年数六拳).十二拳之后晚辈还要敬长辈一杯酒.再一次家族宴上,小明先陪他的叔叔猜拳12下,最后他还要敬他叔叔一杯,规则如下:前两拳只有小明猜赢叔叔,叔叔才会喝下这杯敬酒,且小明也要陪喝,如果第一拳小明没猜到,则小明喝下第一杯酒,继续猜第二拳,没猜到继续喝第二杯,但第三拳不管谁赢双方同饮自己杯中酒,假设小明每拳赢叔叔的概率为,问在敬酒这环节小明喝酒三杯的概率是多少()(猜拳只是一种娱乐,喝酒千万不要过量!)A.B.C.D.25.现有A,B两门选修课供甲、乙、丙三人随机选择,每人必须且只能选其中一门,则甲乙两人都选A选修课的概率是()A.B.C.D.高考高中教育2017年11月17日Leg****dary的高中数学组卷参考答案与试题解析一.选择题(共25小题)1.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a※b=12,a∈N*,b∈N*}中的元素个数是()A.10个B.15个C.16个D.18个【解答】解:a※b=12,a、b∈N*,若a和b一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a,b)有4个;若a和b同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a,b)有2×6﹣1=11个,所以满足条件的个数为4+11=15个.故选B2.设集合A={x|x>2},若m=lnee(e为自然对数底),则()A.∅∈AB.m∉AC.m∈AD.A⊆{x|x>m}【解答】解:∵m=elne=e,∴m∈A,故选:C.3.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.【解答】解:从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数n=5×5=25,高考高中教育抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共有m=10个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p==.故选:D.4.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A.B.C.D.【解答】解:从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,共有=36种不同情况,且这些情况是等可能发生的,抽到在2张卡片上的数奇偶性不同的情况有=20种,故抽到在2张卡片上的数奇偶性不同的概率P==,故选:C.5.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.B.C.D.【解答】解:有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,基本事件总数n==10,取出的2支彩笔中含有红色彩笔包含的基本事件个数m==4,∴取出的2支彩笔中含有红色彩笔的概率为p==.高考高中教育故选:C.6.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B7.已知随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2.若0<p1<p2<,则()A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)【解答】解:∵随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2,…,0<p1<p2<,∴<1﹣p2<1﹣p1<1,E(ξ1)=1×p1+0×(1﹣p1)=p1,E(ξ2)=1×p2+0×(1﹣p2)=p2,D(ξ1)=(1﹣p1)2p1+(0﹣p1)2(1﹣p1)=,高考高中教育D(ξ2)=(1﹣p2)2p2+(0﹣p2)2(1﹣p2)=,D(ξ1)﹣D(ξ2)=p1﹣p12﹣()=(p2﹣p1)(p1+p2﹣1)<0,∴E(ξ1)<E(ξ2),D(ξ1)<D(ξ2).故选:A.8.同时掷两个质地均匀的骰子,向上点数之积为12的概率是()A.B.C.D.【解答】解:同时掷两个质地均匀的骰子,共有6×6=36种不同的结果,其中向上点数之积为12的基本事件有(2,6),(3,4),(4,3),(6,2)共4个,∴P==.故选B.9.如图,点E是边长为2的正方形ABCD的CD边中点,若向正方形ABCD内随机投掷一点,则所投点落在△ABE内的概率为()A.B.C.D.【解答】解:由题意,正方形ABCD的面积为4,∵E是CD的中点,∴△ABE的面积为.∴所投点落在△ABE内的概率为P=.故选:D.高考高中教育10.如图,圆O内有一个内接三角形ABC,且直径AB=2,∠ABC=45°,在圆O内随机撒一粒黄豆,则它落在三角形ABC内(阴影部分)的概率是()A.B.C.D.【解答】解:圆O的直径AB=2,半径为1,所以圆的面积为S圆=π•12=π;△ABC的面积为S△ABC=•2•1=1,在圆O内随机撒一粒黄豆,它落在△ABC内(阴影部分)的概率是P==.故选:D.11.甲抛掷均匀硬币2017次,乙抛掷均匀硬币2016次,下列四个随机事件的概率是0.5的是()①甲抛出正面次数比乙抛出正面次数多;②甲抛出反面次数比乙抛出正面次数少;③甲抛出反面次数比甲抛出正面次数多;④乙抛出正面次数与乙抛出反面次数一样多.A.①②B.①③C.②③D.②④【解答】解:根据题意,甲抛掷均匀硬币2017次,乙抛掷均匀硬币2016次,每次抛掷时出现正面的概率都是0.5,出现反面的概率也都是0.5,
本文标题:高中数学概率选择题(精华版)-高中课件精选
链接地址:https://www.777doc.com/doc-1333517 .html