您好,欢迎访问三七文档
--1-1.历届数学中考压轴题中存在等腰三角形汇编1、正方形ABCD在平面直角坐标系中的位置如图所示,点B与原点重合,点D的坐标为(4,4),当三角板直角顶点P的坐标为(3,3)时,设一直角边与x轴交于点E,另一直角边与y轴交于点F.在三角板绕点P旋转的过程中,使得△POE成为等腰三角形,请写出满足条件的点F的坐标;2.已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.3.如图,在平面直角坐标系中,点A(0,6),点B是x轴上的一个动点,连结AB,取AB的中点M,将线段MB绕着点B按顺时针方向旋转90o,得到线段BC.过点B作x轴的垂线交直线AC于点D.设点B坐标是(t,0).(1)当t=4时,求直线AB的解析式;(2)当t0时,用含t的代数式表示点C的坐标及△ABC的面积;(3)是否存在点B,使△ABD为等腰三角形?若存在,请求出所有符合条件的点B的坐标;若不存在,请说明理由.·yOAx备用图MyOCABxD--2-图9BCOyxAyAPBQCOx4.如图,抛物线2812(0)yaxaxaa与x轴交于A、B两点(点A在点B的左侧),抛物线上另有一点C在第一象限,满足∠ACB为直角,且恰使△OCA∽△OBC.(1)求线段OC的长.(2)求该抛物线的函数关系式.(3)在x轴上是否存在点P,使△BCP为等腰三角形?若存在,求出所有符合条件的P点的坐标;若不存在,请说明理由.5、如图,在平面直角坐标系中,四边形OABC为矩形,3OA,4OC,P为直线AB上一动点,将直线OP绕点P逆时针方向旋转90°交直线BC于点Q;(1)当点P在线段AB上运动(不与AB,重合)时,求证:OABQAPBP;(2)在(1)成立的条件下,设点P的横坐标为m,线段CQ的长度为l,求出l关于m的函数解析式,并判断l是否存在最小值,若存在,请求出最小值;若不存在,请说明理由;(3)直线AB上是否存在点P,使POQ△为等腰三角形,若存在,请求出点P的坐标;若不存在,请说明理由.--3-2.中考数学压轴题中存在平行四边形1.如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系式.2.已知抛物线22yxxa(0a)与y轴相交于点A,顶点为M.直线12yxa分别与x轴,y轴相交于BC,两点,并且与直线AM相交于点N.(1)填空:试用含a的代数式分别表示点M与N的坐标,则MN,,,;(2)如图,将NAC△沿y轴翻折,若点N的对应点N′恰好落在抛物线上,AN′与x轴交于点D,连结CD,求a的值和四边形ADCN的面积;(3)在抛物线22yxxa(0a)上是否存在一点P,使得以PACN,,,为顶点的四边形是平行四边形?若存在,求出P点的坐标;若不存在,试说明理由.第(2)题xyBCODAMNN′xyBCOAMN备用图(第2题)xyDCAOB--4-3.如图,已知与x轴交于点(10)A,和(50)B,的抛物线1l的顶点为(34)C,,抛物线2l与1l关于x轴对称,顶点为C.(1)求抛物线2l的函数关系式;(2)已知原点O,定点(04)D,,2l上的点P与1l上的点P始终关于x轴对称,则当点P运动到何处时,以点DOPP,,,为顶点的四边形是平行四边形?(3)在2l上是否存在点M,使ABM△是以AB为斜边且一个角为30的直角三角形?若存,求出点M的坐标;若不存在,说明理由.4.如图,抛物线223yxx与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PFDE∥交抛物线于点F,设点P的横坐标为m;①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设BCF△的面积为S,求S与m的函数关系式.543211234554321AEBC1O2l1lxyxyDCAOB(第4题)--5-yxBAOP3.中考数学压轴题中存在特殊四边形1.如图:二次函数y=﹣x2+ax+b的图象与x轴交于A(-21,0),B(2,0)两点,且与y轴交于点C.(1)求该抛物线的解析式,并判断△ABC的形状;(2)在x轴上方的抛物线上有一点D,且A、C、D、B四点为顶点的四边形是等腰梯形,请直接写出D点的坐标;(3)在此抛物线上是否存在点P,使得以A、C、B、P四点为顶点的四边形是直角梯形?若存在,求出P点的坐标;若不存在,说明理由.2、直线)0(kbkxy与坐标轴分别交于A、B两点,OA、OB的长分别是方程048142xx的两根(OBOA),动点P从O点出发,沿路线O→B→A以每秒1个单位长度的速度运动,到达A点时运动停止.(1)直接写出A、B两点的坐标;(2)设点P的运动时间为t(秒),OPA的面积为S,求S与t之间的函数关系式(不必写出自变量的取值范围);(3)当12S时,直接写出点P的坐标,此时,在坐标轴上是否存在点M,使以O、A、P、M为顶点的四边形是梯形?若存在,请直接写出点M的坐标;若不存在,请说明理由.ACB第1题图--6-3.已知:抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为M.直线y=21x-a分别与x轴,y轴相交于B,C两点,并且与直线AM相交于点N.(1)填空:试用含a的代数式分别表示点M与N的坐标,则M(,),N(,);(2)如图,将△NAC沿y轴翻折,若点N的对应点N′恰好落在抛物线上,AN′与x轴交于点D,连结CD,求a的值和四边形ADCN的面积;(3)在抛物线y=x2-2x+a(a<0)上是否存在一点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出P点的坐标;若不存在,试说明理由.4.已知(1)Am,与(233)Bm,是反比例函数kyx图象上的两个点.(1)求k的值;(2)若点(10)C,,则在反比例函数kyx图象上是否存在点D,使得以ABCD,,,四点为顶点的四边形为梯形?若存在,求出点D的坐标;若不存在,请说明理由.N′CNxOAMByDCNxOAMBy备用图(第4题)ABCxy1111O--7-4.中考数学压轴题中存在相似三角形1、如图,射线OA⊥射线OB,半径r=2cm的动圆M与OB相切于点Q(圆M与OA没有公共点),P是OA上的动点,且PM=3cm,设OP=xcm,OQ=ycm.(1)求x、y所满足的关系式,并写出x的取值范围.(2)当△MOP为等腰三角形时,求相应的x的值.(3)是否存在大于2的实数x,使△MQO∽△OMP?若存在,求相应x的值,若不存在,请说明理由.2.已知:在平面直角坐标系中,抛物线32xaxy(0a)交x轴于A、B两点,交y轴于点C,且对称轴为直线2x.(1)求该抛物线的解析式及顶点D的坐标;(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:探究一:如图2,设△PAD的面积为S,令W=t·S,当0<t<4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;探究二:如图3,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.(参考资料:抛物线)0(2acbxaxy对称轴是直线x2ba)3、正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:RtRtABMMCN△∽△;(2)设BMx,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN面积最大,并求出最大面积;(3)当M点运动到什么位置时RtRtABMAMN△∽△,求x的值.NDACDBM第3题图图2yxOCBAD图3yxOCBADOPAQMB--8-5.数学中考压轴题存在面积与周长1.如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.(1)点B的坐标为▲;用含t的式子表示点P的坐标为▲;(2)记△OMP的面积为S,求S与t的函数关系式(0t6);并求t为何值时,S有最大值?(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的13?若存在,求出点T的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3).(1)求经过A、B、C三点的抛物线的解析式;(2)过C点作CD平行于x轴交抛物线于点D,写出D点的坐标,并求AD、BC的交点E的坐标;(3)若抛物线的顶点为P,连结PC、PD,判断四边形CEDP的形状,并说明理由.PACDEBoxy111OABCPNMxyOABCxy(备用图)--9-第4题图3.(1)探究新知:①如图,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.求证:△ABM与△ABN的面积相等.②如图,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点.试判断△ABM与△ABG的面积是否相等,并说明理由.(2)结论应用:如图③,抛物线cbxaxy2的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.试探究在抛物线cbxaxy2上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等?若存在,请求出此时点E的坐标,若不存在,请说明理由.﹙友情提示:解答本问题过程中,可以直接使用“探究新知”中的结论.﹚4.已知:如图一次函数y=12x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=12x2+bx+c的图象与一次函数y=12x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0)(1)求二次函数的解析式;(2)求四边形BDEC的面积S;(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.ABDCMN图①A图③CDBOxyC图②ABDMFEG--10-5.如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线cbxxy2经过坐标原点O和x轴上另一点E(4,0)(1)当x取何值时,该抛物线的最大值是多少?(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发
本文标题:历届数学中考压轴题
链接地址:https://www.777doc.com/doc-1346275 .html