您好,欢迎访问三七文档
当前位置:首页 > IT计算机/网络 > 电子商务 > 几类不同增长的函数模型[001]完美版
3.2.1几类不同增长的函数模型班级:__________姓名:__________设计人__________日期__________课前预习·预习案【温馨寄语】生活的海洋已铺开金色的路,浪花正分列两旁摇动着欢迎的花束。勇敢地去吧,朋友!前进,已吹响出征的海螺;彩霞,正在将鲜花的大旗飞舞……【学习目标】1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义,理解它们的增长差异.2.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异.3.恰当运用函数的三类表示法(解析式、图象、表格)并借助信息技术解决一些实际问题.【学习重点】1.将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义2.集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合【学习难点】1.怎样选择数学模型分析解决实际问题2.难点是集合特征性质的概念,以及运用特征性质描述法表示集合【自主学习】1.三类增长型函数图象性质的变化特征2.三类增长型函数之间增长速度的比较(1)指数函数和幂函数在区间(0,+∞)上,由于的增长速度的增长速度,因而总存在一个实数,当时,就会有_____________(,).(2)对数函数和幂函数,的增长的增长,因而在区间(0,+∞)上,总存在一个实数,使时有_____________(,).结论:三类增长型的函数尽管均为增函数,但它们的增长速度不同,且不在同一个“档次”上,在(0,+∞)上,总会存在一个,当时有.【预习评价】1.下表显示了函数值随自变量变化的一组数据,由此可判断它最可能符合的函数模型为-2-10121416A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型2.某种植物生长发育的数量与时间的关系如下表:123138下面的函数关系式中,能表达这种关系的是A.B.C.D.3.某工厂12月份的产量是1月份产量的7倍,那么该工厂这一年中的月平均增长率是.4.某种商品降价10%后,欲恢复原价,则应提价.知识拓展·探究案【合作探究】1.几类函数模型的特征及其增长差异的比较观察函数,,在区间(0,+∞)上的图象,思考以下几个问题:(1)三个函数在区间(0,+∞)上的图象有什么特点?(2)当趋于无穷大时,三个函数中哪个函数的增长速度最快?哪个最慢?(3)一般情况下,函数,和在区间(0,+∞)上增长速度怎样?2.几类函数模型的应用当题目条件中的信息以表格等形式给出时,常常先根据相关数据中的信息进行描点,结合描点后的图象,选择合适的函数模型来解决有关问题,观察下列图象探究有关问题:(1)根据图象的特点,①②③④应分别选用哪种函数模型较好?(2)已知函数模型,求函数的解析式一般常用的方法是什么?【教师点拨】1.四类不同增长的函数模型(1)增长速度不变的函数模型是一次函数模型.(2)增长速度最快即呈现爆炸式增长的函数模型是指数函数模型.(3)增长速度较慢的函数模型是对数函数模型.(4)增长速度平稳的函数模型是幂函数模型.2.几类函数模型的选择(1)一次函数模型:当增加一个单位时,增加或减少的量为定值,则是的一次函数,一次函数的图象为直线.(2)二次函数模型:二次函数是常用的重要模型,是或其他量的二次函数,常用来求最大值或最小值问题,但要注意定义域.(3)指数函数模型、对数函数模型:当问题中每期(或每年、每段等)的增长率相同,则为指数函数模型或对数函数模型,一般与增长率、衰减率、利息等现实问题联系紧密.【交流展示】1.当自变量足够大时,下列函数中增长速度最快的是A.B.C.D.2.若,试分析三个函数模型,,的增长差异,用“>”把它们的取值大小关系连接起来为.3.下表显示出函数值随自变量变化的一组数据,由此判断符合这组数据的最恰当的函数模型是4567891013151719212325A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型4.2005年1月6日是“中国十三亿人口日”,如果要使我国总人口在2015年以前控制在十四亿之内,那么从2005年1月6日开始的随后10年由我国的年平均人口自然增长率应控制在多少以内.【学习小结】1.建立函数模型要遵偱的原则(1)简化原则建立模型,要对原型进行一定的简化,抓主要因素、主变量,尽量建立较低阶、较简便的模型.(2)可推演原则建立的模型一定要有意义,既能对其进行理论分析,又能计算和推理,且能推演出正确结果.(3)反映性原则建立的模型必须真实地反映原型的特征和关系,即应与原型具有“相似性”,所得模型的解应具有说明现实问题的功能,能回到具体研究对象中去解决问题.2.三种函数模型的表达式及其增长特点的总结(1)指数函数模型:表达式为(,,为常数,),当时,增长特点是随着自变量的增大,函数值增大的速度越来越快,常称之为“指数爆炸”;当时,函数值由快到慢地减少.(2)对数函数模型:表达式为,,为常数,),当时,增长的特点是开始阶段增长得较快,但随着的逐渐增大,其函数值变化得越来越慢,常称之为“蜗牛式增长”;当时,相应函数值逐渐减少,变化得越来越慢.(3)幂函数模型:表达式为((,,为常数,,,为常数,,),其增长情况由和的取值确定,常见的有二次函数模型.【当堂检测】1.三人赛跑,假设其路过的路程和时间的函数关系分别是,,,他们一直跑下去,最终跑在最前面的人具有的函数关系是A.B.C.D.一样快2.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售800台,则下列函数模型中能准确地反映销售量与投放市场的月数之间关系的是A.B.C.D.3.2.1几类不同增长的函数模型详细答案课前预习·预习案【自主学习】1.增函数增函数增函数y轴x轴2.(1)快于ax>xn(2)慢于xn>logaxax>xn>logax(a>1,n>0)【预习评价】1.C2.D3.4.11.11%知识拓展·探究案【合作探究】1.(1)三个函数在区间(0,+∞)上的图象都是上升的,即单调递增.(2)三个函数的增长速度差异很大,其中y=2x增长速度最快,y=log2x增长速度最慢.(3)一般情况下,y=ax(a>1)增长速度越来越快,一般称为爆炸式增长,y=logax(a>1)增长会越来越慢,y=xn(n>0)介于它们两个之间.2.(1)①随着x值的增大y值的变化越来越大,所以常选用指数型函数来模拟;②随着x值的增大y值的变化越来越近似为零,所以常用对数型函数模拟;③图形中的点先升后降,所以常选用二次函数模拟;④数据点大致都落在一条直线附近,所以常选用一次函数模拟.(2)已知函数类型求函数的解析式一般常用的方法是待定系数法,根据函数的类型,可设出其函数解析式,用待定系数法求解.【交流展示】1.A2.3.A4.74%【当堂检测】1.A2.C风,没有衣裳;时间,没有居所;它们是拥有全世界的两个穷人生活不只眼前的苟且,还有诗和远方的田野。你赤手空拳来到人世间,为了心中的那片海不顾一切。运动太多和太少,同样的损伤体力;饮食过多与过少,同样的损伤健康;唯有适度可以产生、增进、保持体力和健康。秋水无痕聆听落叶的情愫红尘往事呢喃起涟漪无数心口无语奢望灿烂的孤独明月黄昏遍遍不再少年路岁月极美,在于它必然的流逝。春花、秋月、夏日、冬雪。你必汗流满面才得糊口,直到你归了土;因为你是从土而出的。你本是尘土,仍要归于尘土。我始终相信,开始在内心生活得更严肃的人,也会在外表上开始生活得更朴素。在一个奢华浪费的年代,我希望能向世界表明,人类真正需要的的东西是非常之微少的。世界上的事情,最忌讳的就是个十全十美,你看那天上的月亮,一旦圆满了,马上就要亏厌;树上的果子,一旦熟透了,马上就要坠落。凡事总要稍留欠缺,才能持恒。只有经历过地狱般的磨砺,才能练就创造天堂的力量;只有流过血的手指,才能弹出世间的绝响。时光只顾催人老,不解多情,长恨离亭,滴泪春衫酒易醒。梧桐昨夜西风急,淡月朦胧,好梦频惊,何处高楼雁一声?如果你长时间盯着深渊,深渊也会盯着你。所有的结局都已写好所有的泪水也都已启程却忽然忘了是怎么样的一个开始在那个古老的不再回来的夏日无论我如何地去追索年轻的你只如云影掠过而你微笑的面容极浅极淡逐渐隐没在日落后的群岚遂翻开那发黄的扉页命运将它装订得极为拙劣含着泪我一读再读却不得不承认青春是一本太仓促的书记忆是无花的蔷薇,永远不会败落。我也要求你读书用功,不是因为我要你跟别人比成就,而是因为,我希望你将来会拥有选择的权利,选择有意义,有时间的工作,而不是被迫谋生。尽管心很累很疲倦我却没有理由后退或滞留在过去与未来之间三千年读史,不外功名利禄;九万里悟道,终归诗酒田园。这是一个最好的时代,这是一个最坏的时代这是一个智慧的年代,这是一个愚蠢的年代;这是一个光明的季节,这是一个黑暗的季节;这是希望之春,这是失望之冬;人们面前应有尽有,人们面前一无所有;人们正踏上天堂之路,人们正走向地狱之门。我有所感事,结在深深肠。你一定要“离开”才能开展你自己。所谓父母,就是那不断对着背影既欣喜又悲伤,想追回拥抱又不敢声张的人。心之所向素履以往生如逆旅一个人的行走范围,就是他的世界。因为爱过,所以慈悲;因为懂得,所以宽容。刻意去找的东西,往往是找不到的。天下万物的来和去,都有他的时间。与善人居,如入芝兰之室,久而自芳也;与恶人居,如入鲍鱼之肆,久而自臭也。曾经沧海难为水,除却巫山不是云。回首向来萧瑟处,归去,也无风雨也无晴。半生闯荡,带来家业丰厚,儿孙满堂,行走一生的脚步,起点,终点,归根到底,都是家所在的地方,这是中国人秉持千年的信仰,朴素,但有力量。风吹不倒有根的树我能承受多少磨难,就可以问老天要多少人生。心,若没有栖息的地方,到哪里都是流浪...如果有来生,要做一只鸟,飞越永恒,没有迷途的苦恼。东方有火红的希望,南方有温暖的巢床,向西逐退残阳,向北唤醒芬芳。如果有来生,希望每次相遇,都能化为永恒。不乱于心,不困于情。不畏将来,不念过往。如此,安好。笑,全世界便与你同声笑,哭,你便独自哭。一辈子,不说后悔,不诉离伤。上帝作证,我是真的想忘记,但上帝也知道,我是真的忘不了如果其中一半是百分百的话那就不是选择了而是正确答案了,一半一半,选哪一半都很困难,所以这才是选择。跟着你,在哪里,做什么,都好。眠。我倾尽一生,囚你无期。择一人深爱,等一人终老。痴一人情深,留一世繁华。断一根琴弦,歌一曲离别。我背弃一切,共度朝夕。人总是在接近幸福时倍感幸福,在幸福进行时却患得患失。路过的已经路过,留下的且当珍惜我相信,真正在乎我的人是不会被别人抢走的,无论是友情,还是爱情。我还是相信,星星会说话,石头会开花,穿过夏天的木栅栏和冬天的风雪之后,你终会抵达!每一个不曾起舞的日子,都是对生命的辜负。每个清晨都像一记响亮的耳光,提醒我,若不学会遗忘,就背负绝望。那一年夏天的雨,像天上的星星一样多,给我美丽的晴空,我们都有小小的伤口,把年轻的爱缝缝又补补,我会一直站在你左右,陪你到最后的最后。如果一开始就知道是这样的结局,我不知道自己是不是会那样的奋不顾身。黄昏是一天最美丽的时刻,愿每一颗流浪的心,在一盏灯光下,得到永远的归宿。因为有了因为,所以有了所以。既然已成既然,何必再说何必。想念是人最无奈的时候唯一能做的事情。你受的苦,会照亮你的路。我希望有个如你一般的人。如这山间清晨一般明亮清爽的人,如奔赴古城道路上阳光一般的人,温暖而不炙热,覆盖我所有肌肤。由起点到夜晚,由山野到书房,一切问题的答案都很简单。我希望有个如你一般的人,贯彻未来,数遍生命的公路牌。岁月极美,在于它必然的流逝。春花、秋月、夏日、冬雪说并用程这为再年余生,风雪是你,成多每内淡是你,清贫是你,荣华是你,心底温柔是你,并用光所内为界,也是你。个人的遭遇,命运的多舛都使我被迫成熟,这一切的代价都当是日后活下去的力量。送你的白色沙漏,是一个关于成长的礼物,如果能给你爱和感动,我是多么的幸福,我有过很多的朋友,没有谁像你一样的温柔,每当你牵起
本文标题:几类不同增长的函数模型[001]完美版
链接地址:https://www.777doc.com/doc-1349006 .html