您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 反比例函数的应用经典习题(含答案)
反比例函数的应用反比例函数应用——跨学科的综合性问题:解答该类问题的关键是确定两个变量之间的函数关系(常应用物理公式),然后利用待定系数法求出它们的关系式.常见模型:1.压力与压强、受力面积的关系2.电压、电流与电阻的关系3.水池中水的体积、排水量与所需时间的关系4、气体的气压P(千帕)与气体体积V(立方米)的关系例1、某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600N,那么(1)用含S的代数式表示p,并求木板面积为0.2m2时.压强是多少?解:P=F/S=600/S,S=0.2m2,P=600/0.2=1200(Pa)(2)如果要求压强不超过6000Pa,木板面积至少要多大?方法一:P=600/S≤6000,S≥600/6000=0.1,故面积至少0.1m2方法二:已知图象上点的纵坐标不大于6000,求这些点所处位置及它们横坐标的取值范围.实际上这些点都在直线P=6000下方的图象上(3)在直角坐标系中,作出相应的函数图象.注意:只需要坐第一象限的图,因为S>0.例2.蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R()之间的函数关系如图所示。(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?解:因为电流I与电压U之间的关系为IR=U(U为定值),把图象上的点A的坐标(9,4)代入,得U=36.所以蓄电池的电压U=36V.这一函数的表达式为:I=36/R(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?R(Ω)345678910I(A)4解:当I≤10A时,解得R≥3.6(Ω).所以可变电阻应不小于3.6Ω.试一试1.某蓄水池的排水管每时排水8m3,6h可将满池水全部排空。(1)蓄水池的容积是多少?解:蓄水池的容积为:8×6=48(m3).(2)如果增加排水管,使每时的排水量达到Q(3m),那么将满池水排空所需的时间t(h)将如何变化?答:此时所需时间t(h)将减少.(3)写出t与Q之间的关系式;解:t与Q之间的函数关系式为:(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?解:当t=5h时,Q=48/5=9.6(3m).所以每时的排水量至少为9.6(3m).(5)已知排水管的最大排水量为每时123m,那么最少多长时间可将满池水全部排空?解:Q≤123m,t≥48/12=4h,所以最少4小时把水排空。例3.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)(1)写出这个函数的解析式;(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?分析:题中已知变量P与V是反比例函数关系,并且图象经过点A,利用待定系数法可以求出P与V的解析式,得VP96,(3)问中当P大于144千帕时,气球会爆炸,即当P不超过144千帕时,是安全范围。根据反比例函数的图象和性质,P随V的增大而减小,可先求出气压P=144千帕时所对应的气体体积,再分析出最后结果是不小于32立方米例4.(2011•河池)如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边的活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡,改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如下表:48tQ(1)把上表中(x,y)的各组对应值作为点的坐标,在坐标系中描出相应的点,用平滑曲线连接这些点;(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式并加以验证;(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少cm?(4)当活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?解:(1)如图所示:(2)由图象猜测y与x之间的函数关系为反比例函数,∴设(k≠0),把x=10,y=30代入得:k=300,∴,将其余各点代入验证均适合,∴y与x的函数关系式为:.(3)把y=24代入得:x=12.5,∴当砝码的质量为24g时,活动托盘B与点O的距离是12.5cm.(4)根据反比例函数的增减性,即可得出,随着活动托盘B与O点的距离不断减小,砝码的示数会不断增大;∴应添加砝码.反比例函数应用——实际应用:读懂题意正确列出函数关系式是解题的关键例5、用洗衣粉洗衣物时,漂洗的次数与衣物中洗衣粉的残留量近似地满足反比例函数关系.寄宿生小红、小敏晚饭后用同一种洗衣粉各自洗一件同样的衣服,漂洗时,小红每次用一盆水(约10升),小敏每次用半盆水(约5升),如果她们都用了5克洗衣粉,第一次漂洗后,小红的衣服中残留的洗衣粉还有1.5克,小敏的衣服中残留的洗衣粉还有2克.(1)请帮助小红、小敏求出各自衣服中洗衣粉的残留量y与漂洗次数x的函数关系式;(2)当洗衣粉的残留量降至0.5克时,便视为衣服漂洗干净,从节约用水的角度来看,你认为谁的漂洗方法值得提倡,为什么?分析:(1)设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数关系式分别为:y1=,y2=,后根据题意代入求出k1和k2即可;(2)当y=0.5时,求出此时小红和小敏所用的水量,后进行比较即可.解:(1)设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数关系式分别为:y1=,y2=,将和分别代入两个关系式得:1.5=,2=,解得:k1=1.5,k2=2.∴小红的函数关系式是=,小敏的函数关系式是.(2)把y=0.5分别代入两个函数得:=0.5,=0.5,解得:x1=3,x2=4,10×3=30(升),5×4=20(升).答:小红共用30升水,小敏共用20升水,小敏的方法更值得提倡.例6.为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式为,自变量x的取值范为;药物燃烧后,y关于x的函数关系式为.(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过______分钟后,员工才能回到办公室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?分析:(1)药物燃烧时,由图象可知函数y是x的正比例函数,设xky1,将点(8,6)代人解析式,求得xy43,自变量0<x≤8;药物燃烧后,由图象看出y是x的反比例函数,设xky2,用待定系数法求得xy48(2)燃烧时,药含量逐渐增加,燃烧后,药含量逐渐减少,因此,只能在燃烧后的某一时间进入办公室,先将药含量y=1.6代入xy48,求出x=30,根据反比例函数的图象与性质知药含量y随时间x的增大而减小,求得时间至少要30分钟(3)药物燃烧过程中,药含量逐渐增加,当y=3时,代入xy43中,得x=4,即当药物燃烧4分钟时,药含量达到3毫克;药物燃烧后,药含量由最高6毫克逐渐减少,其间还能达到3毫克,所以当y=3时,代入xy48,得x=16,持续时间为16-4=12>10,因此消毒有效试一试1.京沈高速公路全长658km,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间的函数关系式为2.完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式3.一定质量的氧气,它的密度(kg/m3)是它的体积V(m3)的反比例函数,当V=10时,=1.43,(1)求与V的函数关系式;(2)求当V=2时氧气的密度反比例函数的应用——反比例函数与一次函数的综合问题:结合一次函数图象的性质和反比例函数图象的性质解题例7.如图,正比例函数y=k1x的图象与反比例函数y=xk2的图象相交于A,B两点,其中点A的坐标为(3,23).(1)分别写出这两个函数的表达式:(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流.解:(1)把A点坐标(3,23)分别代入y=k1x,和y=k2/x,解得k1=2.k2=6所以所求的函数表达式为:y=2x,和y=6/x.(2)B点的坐标是两个函数组成的方程组y=2x,和y=6/x.的另一个解.解得x=±3例8、如图已知一次函数y=-x+2的图像与反比例函数y=-8/x的图像交于A、B两点求(1)A,B两点的坐标;(2)△AOB的面积试一试如图已知一次函数y=kx+b的图像与反比例函数y=-8/x的图像交于3,23.(3,23)xyB26yxyx8,:(1)2.yxyx解4,2,2;4.xxyy解得或(2,4),(4,2).AB).0,2(,2,0,2:)2(Mxyxy时当解法一.2OM.,DxBDCxAC轴于轴于作,2,4BDAC.4422121ACOMSOMA.642OAMOMBAOBSSS).2,0(,2,0,2:)2(Nyxxy时当解法二.2ON.,DyBDCyAC轴于轴于作,4,2BDAC,4422121BDONSONB.2222121ACONSONA.624ONAONBAOBSSSA、B两点,A的横坐标和B的纵坐标都是-2。求:(1)A,B两点的坐标(2)一次函数的解析式(3)△AOB的面积解:(1)设A(-2,a),B(b,-2),将x=-2,y=a代y=-8/x中得:a=4.∴A(-2,4),将x=b,y=-2代入y=-8/x中得:B(4,-2).故A,B两点坐标为:(-2,4),(4,-2).(2)分别将A(-2,4)、B(4,-2)代入y=kx+b中,得,-2k+b=44k+b=-2解得:k=-1,b=2,∴一次函数的解析式为:y=-x+2.(3)面积为6例9.如图,一次函数y=kx+b的图象与反比例函数xmy的图象交于A(-2,1)、B(1,n)两点(1)求反比例函数和一次函数的解析式(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围分析:因为A点在反比例函数的图象上,可先求出反比例函数的解析式xy2,又B点在反比例函数的图象上,代入即可求出n的值,最后再由A、B两点坐标求出一次函数解析式y=-x-1,第(2)问根据图象可得x的取值范围x<-2或0<x<1,这是因为比较两个不同函数的值的大小时,就是看这两个函数图象哪个在上方,哪个在下方。例10、如果一次函数的图像与反比例函数xmnymnmxy30相交于点(221,),那么该直线与双曲线的另一个交点为()解析:12132212213nmmnnmxxmnynmxy解得,,相交于与双曲线直线221111121,122211yxyxxyxyxyxy得解方程组双曲线为直线为11,另一个点为例11、如图,在AOBRt中,点A是直线mxy与双曲线xmy在第一象限的交点,且2AOBS,则m的值是_____.解:因为直线mxy与双曲线xmy过点A,设A点的坐标为AAyx,.则有AAAAx
本文标题:反比例函数的应用经典习题(含答案)
链接地址:https://www.777doc.com/doc-1349977 .html