您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > 苏教版八年级上册《轴对称图形》全章复习与巩固--知识讲解(提高)
《轴对称图形》全章复习与巩固—知识讲解(提高)【学习目标】1.认识轴对称、轴对称图形,理解轴对称的基本性质及它们的简单应用;2.了解线段、角的轴对称性,并掌握与其相关的性质;3.了解等腰三角形、等边三角形的有关概念,并掌握它们的性质以及判定方法.【知识网络】【要点梳理】要点一、轴对称1.轴对称图形和轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.2.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.3.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.4.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).要点二、线段、角的轴对称性1.线段的轴对称性(1)线段是轴对称图形,线段的垂直平分线是它的对称轴.(2)线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;(3)线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线2.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴.(2)角平分线上的点到角两边的距离相等.(3)角的内部到角两边距离相等的点在角的平分线上.要点三、等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半.【典型例题】类型一、轴对称的性质与应用1、如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.2个C.3个D.4个【思路点拨】分别以正方形的对角线和田字格的十字线为对称轴,来找三角形.【答案】C;【解析】先把田字格图标上字母如图,确定对称轴找出符合条件的三角形,再计算个数.△HEC与△ABC关于CD对称;△FDB与△ABC关于BE对称;△GED与△ABC关于HF对称;关于AG对称的是它本身.所以共3个.【总结升华】本题考查了轴对称的性质;确定对称轴然后找出成轴对称的三角形是解题的关键.举一反三:【变式】如图,△ABC的内部有一点P,且D,E,F是P分别以AB,BC,AC为对称轴的对称点.若△ABC的内角∠A=70°,∠B=60°,∠C=50°,则∠ADB+∠BEC+∠CFA=()A.180°B.270°C.360°D.480°【答案】C;解:连接AP,BP,CP,∵D,E,F是P分别以AB,BC,AC为对称轴的对称点∴∠ADB=∠APB,∠BEC=∠BPC,∠CFA=∠APC,∴∠ADB+∠BEC+∠CFA=∠APB+∠BPC+∠APC=360°.2、已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数.【思路点拨】求周长最小,利用轴对称的性质,找到P的对称点来确定A、B的位置,角度的计算,可以通过三角形内角和定理和等腰三角形的性质计算.【答案与解析】解:分别作P关于OM、ON的对称点1P,2P,连接12PP交OM于A,ON于B.则△PAB为符合条件的三角形.∵∠MON=40°∴∠12PPP=140°.∠1PPA=12∠PAB,∠2PPB=12∠PBA.∴12(∠PAB+∠PBA)+∠APB=140°∴∠PAB+∠PBA+2∠APB=280°∵∠PAB=∠1P+∠1PPA,∠PBA=∠2P+∠2PPB∴∠1P+∠2P+∠12PPP=180°∴∠APB=100°【总结升华】将实际问题抽象或转化为几何模型,将周长的三条线段的和转化为一条线段,这样取得周长的最小值.举一反三:【变式】如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为().A.100°B.110°C.120°D.130°【答案】C;提示:找A点关于BC的对称点1A,关于ED的对称点2A,连接12AA,交BC于M点,ED于N点,此时△AMN周长最小.∠AMN+∠ANM=180°-∠MAN,而2∠BAM=∠AMN,2∠EAN=∠ANM,∠BAM+∠EAN+∠MAN=120°,所以∠AMN+∠ANM=120°.3、如图,△ABC关于平行于x轴的一条直线对称,已知A点坐标是(1,2),C点坐标是(1,-4),则这条平行于x轴的直线是()A.直线x=-1B.直线x=-3C.直线y=-1D.直线y=-3【思路点拨】根据题意,可得A、C的连线与该条直线垂直,且两点到此直线的距离相等,从而可以解出该直线.【答案】C;【解析】解:由题意可知,该条直线垂直平分线段AC又A点坐标是(1,2),C点坐标是(1,-4)∴AC=6∴点A,C到该直线的距离都为3即可得直线为y=-1【总结升华】本题考查了坐标与图形的变化一一对称的性质与运用,解决此类题应认真观察图形,由A与C的纵坐标求得对称轴.举一反三:【变式1】如图,若直线m经过第二、四象限,且平分坐标轴的夹角,Rt△AOB与Rt△AOB关于直线m对称,已知A(1,2),则点'A的坐标为()A.(-1,2)B.(1,-2)C.(-1,-2)D.(-2,-1)【答案】D;提示:因为Rt△AOB与Rt△AOB关于直线m对称,所以通过作图可知,A的坐标是(-2,-1).【变式2】如图,ΔABC中,点A的坐标为(0,1),点C的坐标为(4,3),点B的坐标为(3,1),如果要使ΔABD与ΔABC全等,求点D的坐标.【答案】解:满足条件的点D的坐标有3个(4,-1);(-1,-1);(-1,3).类型二、等腰三角形的综合应用4、如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴ABPS△=12AB•PE,ACPS△=12AC•PF,ABCS△=12AB•CH.又∵ABPACPABCSSS△△△,∴12AB•PE+12AC•PF=12AB•CH.∵AB=AC,∴PE+PF=CH.(1)如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜想,并加以证明:(2)填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB边上的高CH=______.点P到AB边的距离PE=________.【答案】7;4或10;【解析】解:(1)如图②,PE=PF+CH.证明如下:∵PE⊥AB,PF⊥AC,CH⊥AB,∴ABPS△=12AB•PE,ACPS△=12AC•PF,ABCS△=12AB•CH,∵ABPS△=ACPS△+ABCS△,∴12AB•PE=12AC•PF+12AB•CH,又∵AB=AC,∴PE=PF+CH;(2)∵在△ACH中,∠A=30°,∴AC=2CH.∵ABCS△=12AB•CH,AB=AC,∴12×2CH•CH=49,∴CH=7.分两种情况:①P为底边BC上一点,如图①.∵PE+PF=CH,∴PE=CH-PF=7-3=4;②P为BC延长线上的点时,如图②.∵PE=PF+CH,∴PE=3+7=10.故答案为7;4或10.【总结升华】本题考查了等腰三角形的性质与三角形的面积,难度适中,运用面积证明可使问题简便,(2)中分情况讨论是解题的关键.5、已知,如图,∠1=12°,∠2=36°,∠3=48°,∠4=24°.求ADB的度数.【答案与解析】解:将ABD△沿AB翻折,得到ABE△,连结CE,则ABDABE△≌△,∴,,BDBEADBAEB∠1=∠5=12°.∴125EBC60°∵3ABC48°∴ABAC.又∵∠2=36°,34BCD72°,∴,BDCBCDBDBC∴BE=BC∴BCE△为等边三角形.∴.BECE又,ABACAE∴垂直平分BC.∴AE平分BEC.∴12AEBBEC30°∴∠ADB=30°【总结升华】直接求ADB很难,那就想想能不能通过翻折或旋转构造一个与ABD△全等的三角形,从而使其换个位置,看看会不会容易求.举一反三:【变式】在△ABC中,AB=AC,∠BAC=80°,D为形内一点,且∠DAB=∠DBA=10°,求∠ACD的度数.【答案】解:作D关于BC中垂线的对称点E,连结AE,EC,DE∴△ABD≌△ACE∴AD=AE,∠DAB=∠EAC=10°∵∠BAC=80°,∴∠DAE=60°,△ADE为等边三角形∴∠AED=60°∵∠DAB=∠DBA=10°∴AD=BD=DE=EC∴∠AEC=160°,∴∠DEC=140°∴∠DCE=20°∴∠ACD=30°类型三、等边三角形的综合应用6、如图所示,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形.(1)如图(1)所示,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?(2)如图(2)所示,当点M在BC上时,其他条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图(2)证明;若不成立,请说明理由.【答案与解析】解:(1)EN=MF,点F在直线NE上.证明:连接DF,DE,∵△ABC是等边三角形,∴AB=AC=BC.又∵D,E,F是△ABC三边的中点,∴DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=60°.又∠MDN+∠NDF=∠MDF,∠NDF+∠FDE=∠NDE,∵△DMN为等边三角形,DM=DN,∠MDN=60°∴∠MDF=∠NDE.在△DMF和△DNE中,DFDEMDFNDEDMDN,∴△DMF≌△DNE,∴MF=NE,∠DMF=∠DNE.∵∠DMF+60°=∠DNE+
本文标题:苏教版八年级上册《轴对称图形》全章复习与巩固--知识讲解(提高)
链接地址:https://www.777doc.com/doc-1351582 .html