您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 二次函数-培优提高卷
人教版九年级数学第二十二章二次函数培优提高卷考试总分:120分考试时间:120分钟学校:__________班级:__________姓名:__________考号:__________一、选择题(共10小题,每小题3分,共30分)1.函数(是常数)是二次函数的条件是()A.B.C.D.2.如图,二次函数的图象经过点和,下列关于此二次函数的叙述,正确的是()学.科.网...学.科.网...学.科.网...A.当时,的值小于B.当时,的值大于C.当时,的值等于D.当时,的值大于3.函数的图象大致为()A.B.C.D.4.已知二次函数(h为常数),在自变量x的值满足1≤x≤3的条件下,与其对应的函数值y的最小值为5,则h的值为().A.1或-5B.-1或5C.1或-3D.1或35.抛物线的顶点坐标是()A.(3, 1)B.(-3, 1)C.(1, -3)D.(1, 3)6.二次函数的图象的对称轴是直线,其图象的一部分如图所示则:①;②;③;④;⑤当时,.其中判断正确的有()个.A.2B.3C.4D.57.如图所示为二次函数的图象,在下列选项中错误的是()A.B.时,随的增大而增大C.D.方程的根是,8.二次函数、、是常数的大致图象如图所示,抛物线交轴于点,.则下列说法中,正确的是()A.abc0B.b-2a=0C.3a+c0D.9a+6b+4c09.二次函数的图象如图所示,若点,是图象上的两点,则与的大小关系是()A.y1y2B.y1=y2C.y1y2D.不能确定10.物体在地球的引力作用下做自由下落运动,它的运动规律可以表示为:.其中表示自某一高度下落的距离,表示下落的时间,是重力加速度.若某一物体从一固定高度自由下落,其运动过程中下落的距离和时间函数图象大致为()A.B.C.D.二、填空题(共10小题,每小题3分,共30分)11.已知某商品销售利润(元)与该商品销售单价(个)满足,则该商品获利最多为________元.12.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…-4-3-2-10…y…3-2-5-6-5…则x<-2时,y的取值范围是▲.13.已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”.如图分别是当,,,时二次函数的图象,它们的顶点在一条直线上,则这条直线的解析式是________.14.将二次函数配方成的形式,则y=_________________.15.如图所示,二次函数的图象经过点,且与轴交点的横坐标分别为、,其中,,下列结论:①;②;③;④.其中正确的结论有________.(填写正确结论的序号)16.已知二次函数的图象如图所示,下列结论:①;②;③;④;⑤;⑥当时,随的增大而增大.其中正确的说法有________(写出正确说法的序号)17.如图,已知点,,…,在函数位于第二象限的图象上,点,,…,在函数位于第一象限的图象上,点,,…,在轴的正半轴上,若四边形、,…,都是正方形,则正方形的边长为________.18.二次函数的部分对应值如下表:…………①抛物线的顶点坐标为;②与轴的交点坐标为;③与轴的交点坐标为和;④当时,对应的函数值为.以上结论正确的是________.19.已知点、三点都在抛物线的图象上,则、的大小关系是________.(填“、、”)20.如图,是二次函数的图象的一部分,给出下列命题:①;②;③的两根分别为和;④.其中正确的命题是________.(只要求填写正确命题的序号)三、解答题(共6小题,每小题10分,共60分)21.某校为绿化校园,在一块长为米,宽为米的长方形空地上建造一个长方形花圃,如图设计这个花圃的一边靠墙(墙长大于米),并在不靠墙的三边留出一条宽相等的小路,设小路的宽为米,花圃面积为为平方米,求关于的函数解析式,并写出函数的定义域.22.某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中获得的利润(万元)和月份之间满足函数关系式.若利润为万元,求的值.哪一个月能够获得最大利润,最大利润是多少?当产品无利润时,企业会自动停产,企业停产是哪几个月份?23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设的长度为米,矩形区域的面积为米.求证:;求与之间的函数关系式,并写出自变量的取值范围;为何值时,有最大值?最大值是多少?24.已知二次函数的图象与坐标轴交点的坐标分别为,,.求此函数的解析式;求抛物线的开口方向、对称轴及顶点坐标;根据图象直接写出时的取值范围.25.如图,已知二次函数的图象过点和点,对称轴为直线.求该二次函数的关系式和顶点坐标;结合图象,解答下列问题:①当时,求函数的取值范围.②当时,求的取值范围.26.在平面直角坐标系中,平行四边形如图放置,点、的坐标分别是、,将此平行四边形绕点顺时针旋转,得到平行四边形.如抛物线经过点、、,求此抛物线的解析式;在情况下,点是第一象限内抛物线上的一动点,问:当点在何处时,的面积最大?最大面积是多少?并求出此时的坐标;在的情况下,若为抛物线上一动点,为轴上的一动点,点坐标为,当、、、构成以作为一边的平行四边形时,求点的坐标.
本文标题:二次函数-培优提高卷
链接地址:https://www.777doc.com/doc-1352106 .html