您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 酒店餐饮 > 2012数学建模A葡萄酒的评价
12012高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。我们参赛选择的题号是(从A/B/C/D中选择一项填写):A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2012年9月7日赛区评阅编号(由赛区组委会评阅前进行编号):22012高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):1葡萄酒的评价摘要目前,葡萄酒备受大家的青睐,其质量也日益受到人们的关注。葡萄酒的质量与酿酒葡萄的好坏有直接关系,葡萄酒和酿酒葡萄的理化指标会在一定程度上反应葡萄酒和酿酒葡萄的质量。对于问题1,我们采用方差分析的方法建模解决。基本思路是:对两组评酒员的评价结果进行单因素方差分析,然后再用F检验对得出的结果进行进一步验证,得出两组评酒员的评价结果无显著性差异,通过比较两组评酒员评价结果的方差值,得出第二组的结果更可信。对于问题2,我们采用主成分分析方法,建立综合评价模型,对酿酒葡萄进行分级。基本思路是运用因子分析的方法,以特征值大于1为标准,得出酿酒葡萄理化指标的8种主成分,在此基础上把综合因子作为一项排名指标,结合问题1得出的葡萄酒的质量,对酿酒葡萄进行排名,用两种排名的名次之和作为对酿酒葡萄分级的主要依据。此方法消除了主观加权的盲目性,保证了分级的客观性;避免了两个指标中因某一指标数值上远远大于另一指标而使另一指标对排名起不到作用的现象的发生。最终将酿酒葡萄分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ五个等级。对于问题3,我们对酿酒葡萄和葡萄酒的理化指标中具有可比性的同类指标一一对比,经相关性检验得到他们具有显著的线性相关性,进而用线性回归的方法得出回归方程,找到酿酒葡萄和葡萄酒的理化指标之间的联系。对于问题4,先将酿酒葡萄和葡萄酒的量化指标进行无量纲化处理,用F检验验证两组值的相似程度为1,得出酿酒葡萄和葡萄酒的理化指标会对葡萄酒质量产生影响,所以可以用葡萄和葡萄酒的理化指标来评判葡萄酒的质量。文章最后对论文的优缺点做了评价,并给出了一些改进方向,以利于在实际中应用和推广。关键词:方差分析;因子分析;主成分分析法;线性回归分析;SPSS软件;F检验21.问题的重述确定葡萄酒质量时一般是通过聘请一批有资质的的评酒员进行品评。每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。酿酒葡萄的好坏与所酿葡萄酒的质量有直接关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。附件1给出了某一年分一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。请尝试建立数学模型讨论下列问题:1.分析附件1中两组评酒员的评价结果又无明显差异,哪一组结果更可信?2.根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。3.分析酿酒葡萄与葡萄酒的理化指标之间的关系。4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?2.问题的分析对问题1,我们对附件一所给的葡萄酒品尝评分表进行统计学分析,根据各组评酒员对同一种葡萄酒的评价结果算出每种酒样品的得分,并对每组的数据进行方差分析,利用F检验求出两组间的显著水平,并与0.05的显著水平比较,从而判断两组评酒员的评价结果有无显著性差异。确定哪组更可信时,分别求出两组评价结果的方差进行比较,方差越小,可信度也就越高。对问题2,要求根据酿酒葡萄的理化指标和葡萄酒的质量对酿酒葡萄进行分级,属于分类问题。对该问题,可以采用主成分分析法,建立综合评价模型。选取附件2中关于葡萄的一级指标作为影响等级划分的因素,采用因子分析法,确定主成分,结合问题1所得出的葡萄酒的质量对酿酒葡萄进行综合评价并分级。对问题3,分析酿酒葡萄与葡萄酒的理化指标之间的联系,既然是分析两指标之间的联系,就少不了作比较,从比较数据成对出现这一方面考虑,应该选取酿酒葡萄与葡萄酒理化指标中的共有指标进行分析,用一元线性回归模型求出对应指标之间的函数关系,进而确定酿酒葡萄与葡萄酒的理化指标之间的联系。对问题4,分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,参照问题2中酿酒葡萄的理化指标的处理方法,对葡萄酒的理化指标做同样分析。加权处理得出酿酒葡萄和葡萄酒的理化指标对葡萄酒质量产生影响的综合因子E,根据葡萄酒质量排名和E排名比较出产生的影响大小。3.模型的假设(1)假设评酒员都有很高的品评资质,给出的评价结果客观可信。(2)假设问题1中葡萄酒的质量只与评酒员的评分有关。(3)假设更可信的评分组给出的数据可以代表葡萄酒的真实质量。4.符号说明3符号一SS方差符号二df自由度符号三MS标准差符号四F统计量符号五valueP假定值符号六critFF临界值符号七SigF值实际显著性概率符号八iF对应的主成分值符号九G总主成分值符号十iy因变量符号十一ix自变量符号十二E综合因子5.模型的建立与求解5.1问题1的模型建立与求解在评价结果采用百分制的前提下,对每一个品酒员所给出的每一种样品酒的评价结果求和,并求出每一组10名评酒员对同一种酒评价结果总分的平均值,此平均值即为本组针对该样品酒给出的评分,得到两组分别对27个红葡萄酒样品和28个白葡萄酒样品给出的评分。用Excel中的数据分析对每组的数据进行方差分析,利用F检验判断两组评酒员的评价结果有无显著性差异。方差分析结果如下:(1)分析两组评酒员对红葡萄酒的评价表(1):方差分析方差分析:单因素方差分析SUMMARY组观测数求和平均方差列1271972.973.0703753.51524列2271903.970.5148115.82439方差分析差异源SSdfMSFP-valueFcrit组间88.16667188.166672.5430380.1168424.026631组内1802.835234.669814总计1890.99753因为统计量)52,1(0266.45430.205.0FF,所以对红葡萄酒而言,两组评酒员的评价结果没有显著性差异。因为第二组的方差远小于第一组,所以第二组的可信度高于第一组,即第二组的结果更可信。(2)分析两组评酒员对白葡萄酒的评价表(2):方差分析方差分析:单因素方差分析SUMMARY组观测数求和平均方差列1282079.374.2607127.05284列2282142.976.5321410.05485方差分析差异源SSdfMSFP-valueFcrit组间72.23143172.231433.893070.0536134.019541组内1001.9085418.55385总计1074.13955因为统计量)54,1(0195.48931.305.0FF,所以对白葡萄酒而言,两组评酒员的评价结果没有显著性差异。因为第二组的方差小于第一组,所以第二组的可信度高于第一组,即第二组的结果更可信。综上所述,两组评酒员的评价结果无显著性差异,且第二组的结果更可信。5.2问题2的模型建立与求解对于问题2,要求根据酿酒葡萄的理化标准及葡萄酒的质量,对酿酒葡萄进行分级,我们考虑红白两种酿酒葡萄及葡萄酒,建立模型,采运因子分析的方法进行主成分分析。(1)首先对所给附件二的数据进行求平均值等优化处理,以便于进行运算。为了对酿酒葡萄进行客观分级,采用主成分分析法,应用SPSS软件对数据进行因子分析,具体实施步骤如下:1、数据的标准化2、求出R及其特征值,贡献率运用SPSS软件计算出相关矩阵R及其特征值,贡献率。在主成分个数选取时,按照特征值大于1的原则,计算结果如下表:5表(3):方差分解主成分提取分析表成份初始特征值提取平方和载入合计方差的%累积%合计方差的%累积%16.96623.22123.2216.96623.22123.22124.94016.46739.6874.94016.46739.68733.73712.45752.1443.73712.45752.14442.8409.46761.6112.8409.46761.61151.9996.66368.2741.9996.66368.27461.7425.80874.0821.7425.80874.08271.4184.72878.8101.4184.72878.81081.2704.23483.0441.2704.23483.0449.9613.20386.24710.7382.46188.70811.6912.30291.01012.5141.71392.72313.4941.64594.36814.3721.24095.60815.296.98696.59416.254.84697.44017.218.72898.16918.200.66898.83619.112.37599.21120.070.23499.44521.062.20699.65122.043.14399.79423.032.10899.90224.016.05399.95525.010.03499.98826.003.012100.000271.135E-163.782E-16100.00028-3.056E-17-1.019E-16100.00029-1.201E-16-4.003E-16100.00030-3.414E-16-1.138E-15100.000由上表可知,有8种成分的特征值大于1,总贡献率达到83%,适宜做主成分分析,因此我们选取前8个成分作为主要成分,即:F1、……、F8。然后求出成分矩阵,得出主成分的线性表达式。8个主成分的成分矩阵如下表:6表(4):成分矩阵成份12345678总酚.863-.171-.177.224-.018.184-.011.088花色苷.847-.106-.106-.302.097.196-.093.063DPPH自由基.756-.461-.013.215-.023.114.212.114单宁.756-.152-.280-.068-.166.246.243-.057葡萄总黄酮.719-.286-.197.284.031.297.124.057蛋白质.614-.499.181.272.193-.129.081-.126果梗比.583-.212.172-.215-.411-.405.088.040L*-.564-.330.305-.038.050-.307.076.345黄酮醇.558.022.028-.070-.173-.501.476.216出汁率.545-.181-.271.169.016.398-.144.015百粒质量-.534-.355-.472.079.269.149.222.194干物质含量.375.856-.189.094.095-.024.054.034总糖.256.785-.150.261.103-.040-.072.297还原糖.079.769-.113.128.116-.108-.050.073可溶性固形物.246.760-.316.147.121-.048-.025.266氨基酸总量.375.54
本文标题:2012数学建模A葡萄酒的评价
链接地址:https://www.777doc.com/doc-1356483 .html