您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 绩效管理 > 变量之间的关系(题型全面)
最全面的题型圆学霸之梦变量之间的关系表示变量的三种方法:列表法、解析法(关系式法)、图象法◆要点1变量、自变量、因变量(1)在一变化的过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量,常量和变量往往是相对的,相对于某个变化过程。(2)在一变化的过程中,主动发生变化的量,称为自变量,而因变量是随着自变量的变化而发生变化的量。例如小明出去旅行,路程S、速度V、时间T三个量中,速度V一定,路程S则随着时间T的变化而变化。则T为自变量,路程为因变量。◆要点2列表法与变量之间的关系(1)列表法是表示变量之间关系的方法之一,可表示因变量随自变量的变化而变化的情况。(2)从表格中获取信息,找出其中谁是自变量,谁是因变量。找自变量和因变量时,主动发生变化的是自变量,因变量随自变量的增大而增大或减小◆要点3用关系式表示变量之间的关系(1)用来表示自变量与因变量之间关系的数学式子,叫做关系式,是表示变量之间关系的方法之一。(2)写变化式子,实际上根据题意,找到等量关系,列方程,但关系式的写法又不同于方程,必须将因变量单独写在等号的左边。即实质是用含自变量的代数式表示因变量。(3)利用关系式求因变量的值,①已知自变量与因变量的关系式,欲求因变量的值,实质就是求代数式的值;②对于每一个确定的自变量的值,因变量都有一个确定的与之对应的值。◆要点4用图象法表示变量的关系(1)图象是刻画变量之间关系的又一重要方式,特点是非常直观。(2)通常用横轴(水平方向的数轴)上的点表示自变量,用纵轴(竖直方向的数轴)上的点表示因变量。(3)从图象中可以获取很多信息,关键是找准图象上的点对应的横轴和纵轴上的位置,才能准确获取信息。如利用图象求两个变量的对应值,由图象得关系式,进行简单计算,从图象上变量的变化规律进行预测,判断所給图象是否满足实际情景,所给变量之间的关系等。(4)对比看:速度—时间、路程—时间两图象★若图象表示的是速度与时间之间的关系,随时间的增加即从左向右,“上升的线段”①表示速度在增加;“水平线段”②表示速度不变,也就是做匀速运动,“下降的线段”③表示速度在减少。★若图像表示的是距离与时间之间的关系,“上升的线段”①表示物体匀速运动;“水平线段”②表示物体停止运动,“下降的线段”③表示物体反向运动。如图BL—01(1)、BL—01最全面的题型圆学霸之梦专题一:表格表示变量之间的关系例1:在一次实验中,小强把—根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体的质量x的一组对应值:所挂重量x(kg)012345弹簧长度y(cm)202224262830(1)上述表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂重物为4kg时,弹簧多长?不挂重物呢?(3)若所挂重物为6kg时(在弹簧的允许范围内),你能说出此时弹簧的长度吗?变式练习1-1弹簧挂重物后会伸长,测得弹簧长度y(cm)最长为20cm,与所挂物体重量x(kg)间有下面的关系:下列说法不正确的是()A.x与y都是变量,x是自变量,y是因变量B.所挂物体为6kg,弹簧长度为11cmC.物体每增加1kg,弹簧长度就增加0.5cmD.挂30kg物体时一定比原长增加15cm变式练习1-2在日常生活中,我们常常会用到弹簧秤,下表为用弹簧秤称物品时的长度与物品重量之间的关系.伸长长度(cm)024681012挂物重量(kg)0123456如果用y表示弹簧秤的伸长长度,x表示挂物重量,则随着x的逐渐增大,y的变化趋势是怎样的?答:___________________________________________________________当x=3.5时,y=___________;当x=8时,y=_____________.写出x与y之间的关系:___________________________.x01234…y88.599.510…最全面的题型圆学霸之梦例2:果子成熟从树上落到地面,它落下的高度与经过的时间有如下的关系:时间t/秒0.50.60.70.80.91…高度h/米5×0.255×0.365×0.495×0.645×0.815×1…(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果果子经过2秒落到地上,那么请估计这果子开始落下时离地面的高度是多少米?变式练习2-1自变量x与因变量y之间的关系如下表:(1)写出x与y的关系式:__________________(2)当x=2.5时,y=_________.变式练习2-2在弹性限度内,弹簧挂上物体后弹簧的长度与所挂物体的质量之间的关系如下表:所挂物体的质量/kg012345678弹簧的长度/cm1212.51313.51414.51515.516(1)弹簧不挂物体时的长度是多少?(2)如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,那么随着x的变化,y的变化趋势如何?请写出y与x之间的关系式。(3)如果此弹簧的最大挂重为25千克,您能够预测当挂重为14千克时,弹簧的长度是多少吗?x01234…y02468…最全面的题型圆学霸之梦例3:下表中的数据是根据某地区入学儿童人数编制的:年份19981999200020012002入学儿童人数29302720252023302140(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?答:反映了____________和________________之间的关系.其中自变量是_____________,因变量是_______________.(2)随着自变量的变化,因变量变化的趋势是什么?答:___________________________________________________________(3)你认为入学儿童的人数会变成零吗?答:_____________________________变式练习3-1我国从1949年到1999年的人口统计数据如下(精确到0.01亿):时间/年194919591969197919891999人口/亿5.426.728.079.7511.0712.59(1)如果用x表示时间,y表示我国人口总数,那么随着x的变化,y的变化趋势是什么?(2)从1949年起,时间每向后推移10年,我国人口是怎样变化的?变式练习3-2下表给出了桔农老李去年卖桔子的收入随桔子卖出的质量变化的有关数据。质量(千克)123456789收入(元)24681012141618(1)上表反映了那两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当桔子卖出5千克时,收入是多少?当桔子卖出50千克时,收入又是多少?(3)如果用x表示桔子卖出的质量,y表示收入,按表中的关系,用一个式子表示出来例4:婴儿在6个月、一周岁、2周岁时体重分别大约是出生时的2倍、3倍、4倍,6周岁、10周岁时体重分别约是1周岁时的2倍、3倍.(1)上述哪些量在发生变化?自变量和因变量各是什么?(2)某婴儿在出生时的体重是3.5kg,请把他在发育过程中的体重情况填入下表:年龄刚出生6个月1周岁2周岁6周岁10周岁体重(kg)(3)根据表格中的数据,说一说儿童从出生到10周岁之间体重是怎样随年龄增长而变化的?最全面的题型圆学霸之梦变式4-11~6个月的婴儿生长发育得非常快,他们的体重y(克)和月龄x(月)间的关系可以用y=a+700x,其中a是婴儿出生时体重.一个婴儿出生时的体重4000克,请用表格表示,在1~6个月内,这个婴儿的体重y与x之间的关系:月龄/月123456体重/月变式4-21.在课堂45分钟内,什么时候学生的接受能力最强?心理学家发现,学生对概念的接受能力与老师提出概念所在的时间(单位:分钟)之间,有如下关系:时间(分钟)0210121314162426接受能力4347.85959.859.959.85947.843(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)根据表中的数据,你认为老师在第_________分钟提出概念比较适宜?说说你的理由。专题二:图形表示变量之间的关系例1、如图,是某地某年月平均气温随时间变化的图像.请回答下列问题:(1)二月份平均气温是______C,十月份平均气温______C;(2)这一年中,月平均气温最高的是______月,温度大约是______C;(3)月平均最高气温与最低气温大约相差______C(4)月平均最高气温为10C的月份是______月,它可能是______季节;(5)上述变化中,自变量是______,因变量是______;(6)估计明年一月份的平均气温会低于0C吗?最全面的题型圆学霸之梦stmS64o812AB知识点总结:1、图像是表示____之间关系的一种方法,它的特点是更________、更________地反映了因变量随自变量变化的情况.2、用图像表示变量之间的关系时,通常用水平方向的数轴(横轴)上的点表示________,用竖直方向的数轴(纵轴)上的点表示________例1、如图1所示,OA、BA分别表示甲、乙两名学生运动的路程与时间的关系图象,图中S和t分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快()A、2.5mB、2mC、1.5mD、1m变式1-1、一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程s(千米)和行驶时间t(小时)的关系的是()ABCD变式1-2、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点….用S1,S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是()最全面的题型圆学霸之梦乙甲O时间(t)路程(S)1212.510050例2、张大伯出去散步,从家走了20min,到了一个离家900m的阅报亭,看了10min报纸后,用了15min返回到家,如图2图象中能表示张大伯离家时间与距离之间关系的是()变式2-1、假定甲、乙两人在一次赛跑中,路程与时间的关系如图3所示,那么可以知道:①甲、乙两人中先到达终点的是.②乙在这次赛跑中的速度为m/s.变式2-2、如图2,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时例3、小明读七年级,他很想一个人郊外秋游,但妈妈不放心,让他将一天的时间安排做一个详细计划,于是小明绘制了图5交给妈妈,你能根据这幅图想象m距离min时间90010203040500m距离min时间90010203040500m距离min时间90010203040500m距离min时间90010203040500图2ABC图2最全面的题型圆学霸之梦45v/(千米/时)时间/分301001一下小明的秋游情况吗?[变式3-1右图表示的是一辆汽车行驶的速度与时间的图象,你能用语言大致描述这辆汽车的行驶情况吗?例4、新成药业集团研究开发了一种新药,在实验药效时发现,如果儿童按规定剂量服用,那么2小时的时候血液中含药量最高,接着逐步衰减,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当儿童按规定剂量服药后:(1)何时血液中含药量最高?是多少微克?(2)A点表示什么意义?(3)每毫升血液中含药量为2微克以上时在治疗疾病时是有效的,那么这个有效期是多长?(4)你建议该儿童首次服药后几小时再服药?为什么?图5最全面的题型圆学霸之梦变式4-1甲、乙两地相距80千米,A骑自行车,B骑摩托车沿相同路线由甲地到乙地行驶,两人行驶的路程y(千米)与时间x(时)的关系如图6—45所示,请你根据图象回答或解决下面的问题:(1)谁出发较早?早多长时间?谁到达乙地较早?早多长时间?(2)两人
本文标题:变量之间的关系(题型全面)
链接地址:https://www.777doc.com/doc-1391678 .html