您好,欢迎访问三七文档
第十五章汽车制动系第一节概述一、制动系统的功用:使行驶中的汽车强制减速甚至停车;使下坡行驶的汽车速度保持稳定,以保证行车的安全;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车。二、制动系统类型:(1)按制动系统的功用A、行车制动系统——用以使行驶中的汽车降低速度甚至停车的制动系统B、驻车制动系统——用以使已停驶的汽车驻留原地不动的制动系统C、第二制动系统(应急制动系统)——在行车制动系统失效的情况下,保证汽车仍能实现减速或停车的制动系统D、辅助制动系统——在下长坡时,防止行车制动器过热失效的辅助制动系统上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。(2)按制动操纵能源A、人力制动系统——以驾驶员的肌体作为唯一制动能源的制动系统B、动力制动系统——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的系统C、伺服制动系统(助力制动系统)——兼用人力和发动机动力进行制动的制动系统(3)按制动能量的传输方式制动系统可分为机械式、液压式、气压式、电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。制动踏板制动主缸制动油管制动鼓制动轮缸摩擦片制动蹄支承销回位弹簧三、制动系的工作原理是利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。可用右图所示的一种简单的液压制动系统示意图来说明制动系统的工作原理。一个以内圆面为工作表面的金属制动鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上装有摩擦片。制动底板上还装有液压制动轮缸,用油管与装在车架上的液压制动主缸相连通。主缸中的活塞可由驾驶员通过制动踏板机构来操纵。工作原理演示当驾驶员踏下制动踏板,使活塞压缩制动液时轮缸活塞在液压的作用下将制动蹄片压向制动鼓,使制动鼓减小转动速度或保持不动。四、对制动系性能的要求:1、良好的制动性能2、操纵轻便3、制动稳定性好4、制动平顺性好5、制动器散热好第二节液压制动系一、液压制动回路结构:后轮制动器前轮制动器油管前制动轮缸后制动轮缸制动主缸液压式双管路传动装置的布置形式性能:当其中一套管路损坏时,另一套仍可以正常工作,保证汽车制动系的工作可靠性。1、两桥制动器独立制动当一套管路失效时,另一套管路仍能保持一定的制动效能。制动效能低于正常时的50%。制动主缸前后制动器对角独立制动一套管路失效时,另一套管路使对角制动器保持一定的制动效能,为正常时的50%。制动主缸同一制动器两个轮缸独立制动制动主缸当一套管路失效时,另一套管路仍能使前、后制动器保持一定的制动效能。制动效能为正常时的50%。二、制动主缸:双腔制动主缸:活塞活塞出油阀出油阀与前腔连接的制动管路漏油时,则只能后腔中建立液压。此时前缸活塞迅速前移,后缸工作腔中液压升高到制动所需的值。与后腔连接的制动管路漏油时,先是后缸活塞前移,不能推动前缸活塞,在后缸活塞直接顶触前缸活塞时,前缸活塞前移,使前缸工作腔建立必要的液压而制动。三、制动轮缸:分双活塞式和单活塞式两类。轮缸顶块为一调整螺钉,通过其轴向移动可调整制动器间隙。借活塞端面凸台保持的进油间隙形成轮缸内腔。组成:旋转部分:制动鼓固定部分:制动底板制动蹄张开机构:轮缸定位调整:调整凸轮偏心支承销分类:按运动形式分:内张型、外束型按促动装置分:轮缸式凸轮式楔式制动鼓制动底板制动轮缸调整凸轮偏心支承销一、鼓式制动器四、液压式车轮制动器鼓式制动器结构鼓式制动器常见类型(一)轮缸式制动器:1、领从蹄式制动器领蹄(增势蹄)从蹄(减势蹄)制动轮缸下图为领从蹄式制动器示意图,设汽车前进时制动鼓旋转方向(这称为制动鼓正向旋转)如图中箭头所示。沿箭头方向看去,制动蹄1的支承点3在其前端,制动轮缸6所施加的促动力作用于其后端,因而该制动蹄张开时的旋转方向与制动鼓的旋转方向相同。具有这种属性的制动蹄称为领蹄。与此相反,制动蹄2的支承点4在后端,促动力加于其前端,其张开时的旋转方向与制动鼓的旋转方向相反。具有这种属性的制动蹄称为从蹄。当汽车倒驶,即制动鼓反向旋转时,蹄1变成从蹄,而蹄2则变成领蹄。这种在制动鼓正向旋转和反向旋转时,都有一个领蹄和一个从蹄的制动器即称为领从蹄式制动器。如图所示,制动时两活塞施加的促动力是相等的。制动时,领蹄1和从蹄2在促动力FS的作用下,分别绕各自的支承点3和4旋转到紧压在制动鼓5上。旋转着的制动鼓即对两制动蹄分别作用着法向反力N1和N2,以及相应的切向反力T1和T2,两蹄上的这些力分别为各自的支点3和4的支点反力Sl和S2所平衡。可见,领蹄上的切向合力Tl所造成的绕支点3的力矩与促动力FS所造成的绕同一支点的力矩是同向的。所以力T1的作用结果是使领蹄1在制动鼓上压得更紧从而力T1也更大。这表明领蹄具有增势作用。相反,从蹄具有减势作用。故二制动蹄对制动鼓所施加的制动力矩不相等。倒车制动时,虽然蹄2变成领蹄,蹄1变成从蹄,但整个制动器的制动效能还是同前进制动时一样。在领从式制动器中,两制动蹄对制动鼓作用力N1'和N2'的大小是不相等的,因此在制动过程中对制动鼓产生一个附加的径向力。凡制动鼓所受来自二蹄的法向力不能互相平衡的制动器称为非平衡式制动器。1.领蹄2.从蹄3、4.支点5.制动鼓6.制动轮缸2、双领蹄式制动器制动轮缸制动轮缸领蹄领蹄单向助势平衡式制动器无论是前进制动还是倒车制动,两制动蹄都是领蹄的制动器称为双向双领蹄式制动器,图是其结构示意图器。与领从蹄式制动器相比,双向双领蹄式制动器在结构上有三个特点,一是采用两个双活塞式制动轮缸;二是两制动蹄的两端都采用浮式支承,且支点的周向位置也是浮动的;三是制动底板上的所有固定元件,如制动蹄、制动轮缸、回位弹簧等都是成对的,而且既按轴对称、又按中心对称布置。在前进制动时,所有的轮缸活塞都在液压作用下向外移动,将两制动蹄4和8压靠到制动鼓1上。在制动鼓的摩擦力矩作用下,两蹄都绕车轮中心O朝箭头所示的车轮旋转方向转动,将两轮缸活塞外端的支座9推回,直到顶靠到轮缸端面为止。此时两轮缸的支座9成为制动蹄的支点,制动器的工作情况便同图所示的制动器一样。倒车制动时,摩擦力矩的方向相反,使两制动蹄绕车轮中心O逆箭头方向转过一个角度,将可调支座7连同调整螺母6一起推回原位,于是两个支座7便成为蹄的新支承点。这样,每个制动蹄的支点和促动力作用点的位置都与前进制动时相反,其制动效能同前进制动时完全一样。3、双向双领蹄式制动器制动轮缸制动轮缸制动蹄制动蹄双向助势平衡式制动器4、双从蹄式制动器制动轮缸制动轮缸从蹄从蹄双从蹄式制动器前进制动时两制动蹄均为从蹄的制动器称为双从蹄式制动器,其结构示意图见图。这种制动器与双领蹄式制动器结构很相似,二者的差异只在于固定元件与旋转元件的相对运动方向不同。虽然双从蹄式制动器的前进制动效能低于双领蹄式和领从蹄式制动器,但其效能对摩擦系数变化的敏感程度较小,即具有良好的制动效能稳定性。双领蹄、双向双领蹄、双从蹄式制动器的固定元件布置都是中心对称的。如果间隙调整正确,则其制动鼓所受两蹄施加的两个法向合力能互相平衡,不会对轮毂轴承造成附加径向载荷。因此,这三种制动器都属于平衡式制动器。5、自增力式制动器单向自增力式制动器顶杆F2F1F2F1单向自增力式制动器单向自增力式制动器的结构原理见右图。第一制动蹄1和第二制动蹄4的下端分别浮支在浮动的顶杆5的两端。汽车前进制动时,单活塞式轮缸将促动力FS1加于第一蹄,使其上压靠到制动鼓3上。第一蹄是领蹄,并且在各力作用下处于平衡状态。顶杆6是浮动的,将与力S1大小相等、方向相反的促动力FS2施于第二蹄。故第二蹄也是领蹄。作用在第一蹄上的促动力和摩擦力通过顶杆传到第二蹄上,形成第二蹄促动力FS2。对制动蹄1进行受力分析可知,FS2FS1。此外,力FS2对第二蹄支承点的力臂也大于力FS1对第一蹄支承的力臂。因此,第二蹄的制动力矩必然大于第一蹄的制动力矩。倒车制动时,第一蹄的制动效能比一般领蹄的低得多,第二蹄则因未受促动力而不起制动作用。第一蹄1和第二蹄6的上端被各自的回位弹簧2拉拢,并以铆于腹板上端两侧的夹板3的内凹弧面支靠着支承销4。两蹄的下端分别浮支在可调顶杆两端的直槽底面上,并用弹簧8拉紧。受法向力较大的第二蹄摩擦片的面积做得比第一蹄的大,使两蹄的单位压力相近。在制动鼓尺寸和摩擦系数相同的条件下,单向自增力式制动器的前进制动效能不仅高于领从蹄式制动器,而且高于双领蹄式制动器。倒车时整个制动器的制动效能比双从蹄式制动器的效能还低。双向自增力式制动器双向自增力式制动器双向自增力式制动器的结构原理如图d-zd-11所示。其特点是制动鼓正向和反向旋转时均能借蹄鼓间的摩擦起自增力作用。它的结构不同于单向自增力式之处主要是采用双活塞式制动轮缸4,可向两蹄同时施加相等的促动力FS。制动鼓正向(如箭头所示)旋转时,前制动蹄1为第一蹄,后制动蹄3为第二蹄;制动鼓反向旋转时则情况相反。由图可见,在制动时,第一蹄只受一个促动力FS而第二蹄则有两个促动力FS和S,且S>FS。考虑到汽车前进制动的机会远多于倒车制动,且前进制动时制动器工作负荷也远大于倒车制动,故后蹄3的摩擦片面积做得较大。不制动时,两制动蹄和的上端在回位弹簧的作用下浮支在支承销上,两制动蹄的下端在拉簧的作用下浮支在浮动的顶杆两端的凹槽中。汽车前进制动时,制动轮缸(图中未画出)的两活塞向两端顶出,使前后制动蹄离开支承销并压紧到制动鼓上,于是旋转着的制动鼓与两制动蹄之间产生摩擦作用。由于顶杆是浮动的,前后制动蹄及顶杆沿制动鼓的旋转方向转过一个角度,直到后制动蹄的上端再次压到支承销上。此时制动轮缸促动力进一步增大。由于从蹄受顶杆的促动力大于轮缸的促动力,从蹄上端不会离开支承销。汽车倒车制动时,制动器的工作情况与上述相反。轮缸式制动器的调整:1、手动调整装置:(1)转动调整凸轮和带偏心轴颈的支承销。(2)转动调整螺母。(3)调整可调顶杆长度:2、自动调整装置:(1)摩擦限位式间隙自调装置:Δ应等于在制动器间隙为设定的标准值是时,施行完全制动所需的轮缸活塞行程。原理:利用摩擦限位环与缸壁之间不可逆转的轴向相对位移补偿制动器的过量间隙。安装在制动蹄上(2)楔块式间隙自调装置:(3)阶跃式间隙自调装置:二、盘式制动器结构:制动盘制动钳体一汽奥迪100轿车前轮制动器制动块活塞制动钳导向销金属背板与摩擦块组成分类:1、钳盘式制动器:a、定钳盘式制动器b、浮钳盘式制动器2、全盘式制动器应用:轿车、轻型货车1、定钳盘式制动器(固定式制动钳制动器)结构:活塞制动钳体制动块车桥进油口制动盘缺点:油缸多、结构复杂、制动钳尺寸大油路中的制动液受制动盘加热易汽化。(一)钳盘式制动器护罩焊有加强盘7和油管支架制动钳用两个螺栓固定活塞密封圈自调间隙可使制动钳结构简单,造价低廉,中级以下轿车应用较多,但它对橡胶圈的弹性、耐热性、耐磨性、刃边的几何精度及表面粗糙度的要求较高,保持的制动器间隙较小,解除制动不可靠。一些盘式制动器中装设专门的间隙自调装置,大多是摩擦限位一次调准式,如图所示。定钳盘式制动器缺点:1)、液压缸较多,使制动钳结构复杂。2)、液压缸分置于制动盘两侧,必须用跨越制动盘的钳内油道或外部油管来连通,使得制动钳的尺寸过大,难以安装在现代轿车的轮辋内。2、浮钳盘式制动器(浮动式制动钳制动器)结构:车桥导向销进油口活塞制动钳制动块制动盘浮钳盘式制动器工作演示与定钳盘式制动器相比,浮钳盘式制动器轴向和径向尺寸小,制动液受热汽化的机会较少;此外,在兼做驻车制动器的情况下,不用加设驻车制动钳,只须在行车制动钳液压缸附近加装一些推动液压缸活塞的驻车制动机械传动零件即可。止动弹簧将制动快卡在制动支架上(二)全盘式制动器盘式制动器特点优点:1、制动效能稳定。2、浸水后制动效能降低较少。3、输出制动力矩相同情况下,尺寸和质量较小。4、制动盘沿厚度方向的热膨胀量小。5、较容易实现间隙自动调整,其他保养修理作业也较简单。缺点:1、制动效能差,导致
本文标题:汽车制动系ppt
链接地址:https://www.777doc.com/doc-1395914 .html