您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 相似三角形练习题(含解析)
合肥德优教育试卷第1/18页相似三角形练习题一、选择题1、下列各组图形中不是位似图形的是()A.B.C.D.2、若2:3=7:x,则x=()A.2B.3C.3.5D.10.53、两个相似三角形的一组对应边分别为5cm和3cm,如果它们的面积之和为136cm2,则较大三角形的面积是()A.36cm2B.85cm2C.96cm2D.100cm24、如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为()A.(1,-2)B.(-2,1)C.()D.(1,-1)5、如图,已知点A在反比例函数y=(x0)上,作Rt△ABC,点D是斜边AC的中点,连DB并延长交y轴于点E,若△BCE的面积为8,则k的值为()合肥德优教育试卷第2/18页A.8B.12C.16D.206、如图,平面直角坐标系中,直线y=-x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=-的图象交于点C,若BA:AC=2:1,则a的值为()A.2B.-2C.3D.-37、如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长等于()A.6B.5C.9D.合肥德优教育试卷第3/18页8、如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5∶8B.3∶8C.3∶5D.2∶59、如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③=;④=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()A.1B.2C.3D.410、如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从点B出发,沿着B-A-D在菱形ABCD的边上运动,运动到点D停止,点P′是点P关于BD的对称点,PP′交BD于点M,若BM=x,△OPP′的面积为y,则y与x之间的函数图象大致为()合肥德优教育试卷第4/18页A.B.C.D.11、在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M,N,直线m运动的时间为t(秒).设△OMN的面积为S,则能反映S与t之间函数关系的大致图象是()A.B.C.D.12、如图,已知在梯形ABCD中,AD∥BC,BC=2AD,如果对角线AC与BD相交于点O,△AOB、△BOC、△COD、△DOA的面积分别记作S1、S2、S3、S4,那么下列结论中,不正确的是()合肥德优教育试卷第5/18页A.S1=S3B.S2=2S4C.S2=2S1D.S1•S3=S2•S4二、填空题13、如图,将边长为6的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则△EBG的周长是__________cm.14、如图,在△PMN中,点A、B分别在MP和NP的延长线上,==,则=__________.三、解答题15、已知=,求下列算式的值.(1);(2)16、如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积。合肥德优教育试卷第6/18页17、如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:OA2=OE•OF.18、如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△.(1)△与△ABC的位似比是__________;(2)画出△关于y轴对称的△;(3)设点P(a,b)为△ABC内一点,则依上述两次变换后,点P在△内的对应点的坐标是__________.19、已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.20、如图,将边长为8的正方形纸片ABCD折叠,使点B落在CD边的中点E上,压平后得到折痕MN,EF与AD边交于点G.(1)求CN的长;(2)求DG的长;合肥德优教育试卷第7/18页(3)AM=__________.(直接填结果)合肥德优教育试卷第8/18页相似三角形练习题的答案和解析一、选择题1、答案:D试题分析:根据如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心即可求得答案,注意排除法在解选择题中的应用.试题解析:根据位似图形的定义,可得A,B,C是位似图形,B与C的位似中心是交点,A的为中心是圆心;D不是位似图形.故选:D.2、答案:D试题分析:根据两內项之积等于两外项之积列式计算即可得解.试题解析:∵2:3=7:x,∴2x=3×7,∴x=10.5.故选D.3、答案:D试题分析:根据相似三角形的面积的比等于相似比的平方先求出它们的面积的比,然后解答解答.试题解析:∵它们对应边分别为5cm和3cm,∴它们的相似比是,∴它们面积的比为()2=,∵它们的面积之和为136cm2,∴较大三角形的面积是×136=100cm2.故选D.4、答案:D试题分析:首先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(-kx,ky),合肥德优教育试卷第9/18页进而求出即可.试题解析:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,-),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,-1).故选:D.5、答案:C试题分析:根据反比例函数系数k的几何意义,证明△ABC∽△EOB,根据相似比求出BA•BO的值,从而求出△AOB的面积.解:∵△BCE的面积为8,∴BC•OE=8,∴BC•OE=16,∵点D为斜边AC的中点,∴BD=DC,∴∠DBC=∠DCB=∠EBO,又∠EOB=∠ABC,∴△EOB∽△ABC,∴=,∴AB•OB•=BC•OE∴k=AB•BO=BC•OE=16,故选:C.6、答案:A试题分析:想办法把C点坐标用a表示出来,然后代入y=-即可.试题解析:作CE⊥x轴于E,合肥德优教育试卷第10/18页∵AO∥CE,BA:AC=2:1,AO=OB=a,∴=,∴EB=,CE=,∴点C坐标(-,a),又∵点C在y=-上,∴-=-3,∵a>0,∴a=2.故选A.7、答案:A试题分析:位似是特殊的相似,位似比就是相似比,相似形对应边的比相等。解:根据题意,△ABC与△DEF位似,且AB:DE=2:3,AB=4∴DE=6故选:A.8、答案:A试题分析:先由AD:DB=3:5,求得BD:AB的比,再由DE∥BC,根据平行线分线段成比例定理,可得CE:AC=BD:AB,然后由EF∥AB,根据平行线分线段成比例定理,可得CF:CB=CE:AC,则可求得答案。解:∵AD:DB=3:5,∴BD:AB=5:8,∵DE∥BC,∴CE:AC=BD:AB=5:8,∵EF∥AB,∴CF:CB=CE:AC=5:8.故选:A.9、答案:D试题分析:本题考查了相似三角形的判定,根据条件可依次判定是否为相似三角形合肥德优教育试卷第11/18页①∵∠B=∠ACD;∠A=∠A∴△ABC∽△ACD,故正确;②∵∠ADC=∠ACB;∠A=∠A∴△ABC∽△ACD,故正确;③∵=对应边成比例∴△ABC∽△ACD,故正确;④∵=AD•AB∴=对应边成比例,∴△ABC∽△ACD,故正确;故选:D.10、答案:D试题分析:由菱形的性质得出AB=BC=CD=DA,OA=AC=3,OB=BD=4,AC⊥BD,分两种情况:①当BM≤4时,先证明△P′BP∽△CBA,得出比例式,求出PP′,得出△OPP′的面积y是关于x的二次函数,即可得出图象的情形;②当BM≥4时,y与x之间的函数图象的形状与①中的相同;即可得出结论.试题解析:∵四边形ABCD是菱形,∴AB=BC=CD=DA,OA=AC=3,OB=BD=4,AC⊥BD,①当BM≤4时,∵点P′与点P关于BD对称,∴P′P⊥BD,∴P′P∥AC,∴△P′BP∽△CBA,∴,即,∴PP′=x,∵OM=4-x,∴△OPP′的面积y=PP′•OM=×x(4-x)=-x2+3x;∴y与x之间的函数图象是抛物线,开口向下,过(0,0)和(4,0);②当BM≥4时,y与x之间的函数图象的形状与①中的相同,过(4,0)和(8,0);综上所述:y与x之间的函数图象大致为.故选:D.11、答案:C合肥德优教育试卷第12/18页试题分析:当0<t≤4时,OM=t,∵由△OMN∽△OAC,得,即,∴.∴.当4<t<8时,如图,∵OD=t,∴AD=t-4由△DAM∽△AOC,可得,∴.由△BMN∽△BAC,可得,∴CN=t-4.∴.∴S与t之间函数关系式为,其图象大致图象是C.故选C.12、答案:B试题分析:证三角形相似,再根据三角形的面积公式和相似三角形的面积比等于相似比的平方,以及三角形的面积公式即可得出结论.试题解析:A、∵△ABD和△ACD同底、同高,则S△ABD=S△ACD,∴S1=S3,故命题正确;B、∵AD∥BC,∴△AOD∽△COB,又∵BC=2AD,∴=()2=,则S2=2S4正确.故命题错误;合肥德优教育试卷第13/18页C、作MN⊥BC于点N,交AD于点M.∵△AOD∽△COB,又∵BC=2AD,∴==,即=,∴=,则设S△OBC=2x,则S△ABC=3x,则S△AOB=x,即S2=2S1,故命题正确;D、设AD=y,则BC=2y,设OM=z,则ON=2z,则S2=×2y×2z=2yz,S4=×y×z=yz,S△ABC=BC•MN=×2y•3z=3yz,则S1=S3=3yz-2yz=yz,则S1•S3=y2z2,S2•S4=y2z2,故S1•S3=S2•S4正确.故选B.二、填空题13、答案:试题分析:根据翻折的性质可得DF=EF,设EF=x,表示出AF,然后利用勾股定理列方程求出x,从而得到AF、EF的长,再求出△AEF和△BGE相似,根据相似三角形对应边成比例列式求出BG、EG,然后根据三角形周长的定义列式计算即可得解.试题解析:由翻折的性质得,DF=EF,设EF=x,则AF=6-x,∵点E是AB的中点,∴AE=BE=×6=3,在Rt△AEF中,AE2+AF2=EF2,即32+(6-x)2=x2,解得x=,合肥德优教育试卷第14/18页∴AF=6-=,∵∠FEG=∠D=90°,∴∠AEF+∠BEG=90°,∵∠AEF+∠AFE=90°,∴∠AFE=∠BEG,又∵∠A=∠B=90°,∴△AEF∽△BGE,∴==,即==,解得BG=4,EG=5,∴△EBG的周长=3+4+5=12.故答案为:12.14、答案:试题分析:先由==,根据比例的性质可得==,又∠APB=∠MPN,根据两边对应成比例且夹角相等的两三角形相似可得△APB∽△MPN,由相似三角形对应边成比例得到==.试题解析:∵==,∴==,∴1+=1+=,∴==,∴==,又∵∠APB=∠MPN,∴△APB∽△MPN,∴==.故答案为.三、解答题15、答案:(1)合肥德优教育试卷第15/18页(2)试题分析:(1)由比例的性质容易得出结果;(2)设a=3k,则b=2k,代入计算化简即可。解:(1)∵=,∴==;(2)∵=,∴设a=3k,则b=2k,∴===.16、答案:(1)证明见解析(2)cm,试题分析:(1)根据EH∥BC即可证明.(2)如图设AD与EH交于点M,首先证明四边形EFDM是矩形,设正方形
本文标题:相似三角形练习题(含解析)
链接地址:https://www.777doc.com/doc-1415164 .html